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Abstract: Mosquito-Borne Diseases (MBDs) were known to be more prevalent in the tropics, and1

yet the last two decades they are spreading to many other countries, especially in Europe. The2

set (volume) of environmental, meteorological and other spatio-temporally variable parameters3

affecting mosquito abundance makes the modeling and prediction tasks quite challenging. Up4

to now, mosquito abundance prediction problems were addressed with ad-hoc area-specific and5

genus-tailored approaches. We propose and develop MAMOTH, a generic and accurate Machine6

Learning model that predicts mosquito abundances for the upcoming period (the Mean Absolute7

Error of the predictions do not deviate more than 14%). The designed model relies on satellite8

Earth Observation and other in-situ geo-spatial data to tackle the problem. MAMOTH is not9

site- or mosquito genus-dependent, thus it can be easily replicated and applied to multiple cases10

without any special parametrisation. The model was applied to different mosquito genus and11

species (Culex spp. as potential vectors for West Nile Virus, Anopheles spp. for Malaria and Aedes12

albopictus for Zika / Chikungunya / Dengue) and in different areas of interest (Italy, Serbia, France,13

Germany). The results show that the model performs accurately and consistently for all case14

studies. Additionally, the evaluation of different cases, with the model using the same principles,15

provides an opportunity for multi-case and multi-scope comparative studies.16

Keywords: Satellite Earth Observation data; Machine Learning; Entomological data; Mosquito-17

Borne Diseases; Earth Observation for Health; Malaria; Dengue; West Nile Virus;18

1. Introduction19

Mosquito-Borne Diseases (MBDs) are infectious diseases transmitted by mosquitoes20

and are responsible for morbidity and mortality in humans. They are part of the Vector-21

Borne Diseases (VBDs), which account for more than 17% of all infectious diseases and22

cause more than 700,000 deaths annually [1]. Climate change, travel and trade can23

influence the seasonal and geographical spread of mosquitoes and thus the transmission24

of pathogens. Although MDBs can be found in many areas around the world, tropical25

and subtropical are the ones suffering the most, while different mosquito species carry26

different pathogens causing various types of MBDs [2]. MBDs, such as West Nile27

Virus (WNV) transmitted by mosquitoes of the Culex genus, Malaria transmitted by28

mosquitoes of the Anopheles genus, and Chikungunya, Dengue and Zika transmitted by29

Aedes albopictus in Europe have posed challenges to national public health authorities in30

the European region [3].31

It is a widely mistaken belief that the MBDs are only affecting the developing32

countries; Europe has experienced many cases of MBDs outbreaks in the last two decades.33

2010 was a year with large outbreaks of West Nile Virus in Greece and Russia, having34
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262 and 419 human cases respectively and a total of 1016 cases across all Europe [4].35

WNV human infections have sharply increased in 2018 compared to the previous years.36

According to ECDC, in 2019, 615 cases were reported in Italy, 315 cases in Greece, 27737

cases in Romania. In total, 1548 cases were locally acquired and 166 deaths were reported.38

Additionally, 415 WNV cases were recorded in Serbia with 35 deaths [5]. Furthermore,39

according to ECDC, the number of confirmed Malaria cases reported in the EU from 200840

to 2012 ranged between approximately 5000 and 7000 [6], whereas in 2018 it reached41

almost 8500 [7]. All the evidence show that there is a need for preventive actions to42

mitigate the problem.43

A lot of earlier research focuses on predicting the upcoming MBDs risk in order to44

support decision making by successfully designing preventive and mosquito control45

measures in time and space. The state of the art can be divided into two main directions,46

one that aims at predicting the upcoming human cases risk (epidemiological approach)47

and the other that aims at predicting the mosquito populations (entomological approach).48

As expected, the probability of human infection and the mosquito population in a given49

area are strongly dependent variables [8].50

A number of issues have posed difficulties in mosquito population monitoring51

and forecasting up to date. The lack of well structured, consistent and reliable environ-52

mental, landscape and ecosystem data, and their change over time that makes them53

hard to collect, are some of the most important barriers. The necessary placement of54

in-situ equipment for environmental data collection is limiting the study area either55

because of the high cost of operation and maintenance or the inaccessibility of an area.56

Different spatio-temporal resolutions, re-sampling and filtering techniques in limited57

areas increase significantly the complexity of comparative studies. However, the advent58

and plethora of satellite Earth Observation (EO) Big Data from multiple sensors (e.g.59

Sentinel, Landsat, TERRA/AQUA (MODIS), etc.), which allow frequent revisit times60

and larger coverage, enable enhanced earth monitoring at global level and provide61

vast amounts of data that are consistent and accessible via open data platforms [9]. In62

addition, the revolution in data science and machine learning (ML) algorithms provides63

many opportunities for accurate and reliable data-driven solutions to the problem [10].64

Related work65

There are approaches that evaluate analytical dynamic models to predict the up-66

coming human infections or the mosquito populations. In [11], researchers attempted to67

identify conditions conducive to a WNV outbreak in Greece using an epidemiological68

model of differential equations. Other approaches use environmental/meteorological69

data and simple statistical approaches that attempt to identify the conditions favoring70

the spread of MBDs and can be used for mitigation measures. Authors in [12] concluded71

through observational analysis that a rapid increase in temperature is associated with an72

increase in human WNV cases in the West Virginia area of the United States. Authors73

in [13] perform a two step cluster analysis to classify areas in Greece into low, medium74

and high risk for the spread of WNV virus. In [14], a statistical analysis was performed75

for Morocco and it was found that extreme rainfall and high Normalized Difference76

Vegetation Index (NDVI) values are the factors that contribute to WNV amplification.77

In recent years due to the progress in the field of ML a lot of valuable studies that78

combine remote sensing data with ML techniques have been proposed. The authors in79

[15] proposed a novel machine learning method for classification of high-spectral images80

based on the estimated spectral profiles per pixel, providing a promising segmentation81

of materials lying over or beneath the Earth’s surface, while the authors in [16] proposed82

the use of deep learning classifiers which combine different sources of information83

and extract high level features, able to achieve better classification results with remote84

sensing images. More detailed information can be found in [17]. This overall progress in85

the field of remote sensing offered more sophisticated data-driven models to help control86

MBDs. A lot of algorithms have been used in different areas with various features and87
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techniques. [18] and [19] used Support Vector Machine (SVM) to predict Malaria and88

Dengue cases in India and China respectively. Both were based on epidemiological and89

environmental data. General additive models are also a popular method for predicting90

WNV in the Great Plains of the United States [20] and Malaria in Kenya [21]. The91

K-Nearest Neighbors (KNN) algorithm was utilized to estimate the weekly mosquito92

population in northwestern Argentina [22]. Authors in [23], after training many decision93

trees to predict WNV incidence across different areas of the United States over the years,94

concluded that there is not a single model fitting one area over the years, but rather a95

model fitting many areas in a specific year is more feasible.96

However, in all cases studied, limited selected environmental data were included,97

such as temperature and precipitation, which were used as predictors along with other98

kinds of features depending on each case study. Each work presents a model or an99

architecture that focuses on a specific mosquito genus/disease and area of interest, so100

all of these approaches are not directly comparable and are site specific and genus spe-101

cific. These limitations hinder the scalability and generic applicability of the developed102

approaches. In this view arises the need for a generic integrated, scalable and reliable103

Early Warning System (EWS). The idea of the prototype EYWA system, developed under104

the flag of the EuroGEO Action Group for Epidemics, came to overcome several of the105

above mentioned limitations, thus delivering a scalable and robust solution as shown in106

the following sections.107

Our approach108

This work is motivated by the lack of a widely accepted, standardized and generic109

solution for the problem of mosquito abundance predictions. Taking advantage of the110

recent progress in the ML domain, and integrating multi-source EO data to extract111

environmental, landscape and ecosystem related information in a consistent, uniform,112

and reliable way, we focus on designing an early warning predictor of the upcoming113

mosquito population. Our goal is to design a location and genus agnostic model out of a114

generic and adaptive framework. This gave birth to MAMOTH (Mosquitoes Abundance115

Prediction Model autO-calibrated from features pleTHora), presented hereinafter, a116

generic framework that requires no human intervention in selection of the features or117

model’s hyper-parameters tuning. In this paper we present the application of MAMOTH118

in 5 different use cases, comprising of different combinations of mosquito species and119

Areas of Interest (AOI). Our cases include three different mosquito species and four120

different areas. From our study cases, a comparison of the same mosquito (Culex pipiens)121

in three different areas can be performed, as well as a comparison between two different122

mosquito species in the same AOI. Initially the framework was applied for mosquitoes of123

the Culex genus in the Region of Veneto in Italy. The performance analysis showed that124

the accuracy results are promising, consistent with respect to the month of the prediction125

and robust against sensitive features. All the aforementioned predictions took place on126

the trap site, but this is not mandatory. As we saw on the results, the performance is127

promising even without using past entomological features for the prediction.128

After the exploration of the initial case (Culex genus mosquitoes in Veneto region129

of Italy), the framework has been applied to extra four use cases such as Anopheles130

spp. also in the Veneto Region of Italy, Culex pipiens in the Vojvodina region of Serbia,131

Culex pipiens in the Baden Wuerttemberg region of Germany and Aedes Albopictus in132

Grand-Est and Corsica regions of France and the results verified that the performance is133

consistent among different cases. In a nutshell, our work contributions are summarized134

in its capacity to offer:135

• Design an auto-calibrated mosquito forecasting model: that combines Earth Ob-136

servational and entomological information. Our approach allows for a generic137

framework that wraps itself around each case through automated feature selection138

and hyper parameters tuning process. This approach of feature selection prevents139
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the injection of human bias into the model, while allowing for further analysis on140

the selected feature set. Framework’s description is presented in Section 3.141

• Accurate robust forecasting model, tested in actual measurements: for mosquito142

populations, independently of location and genus contextual constraints. The ML143

approach followed in combination with the automated selection of features enabled144

for an auto adjusted and accurate framework validated upon five different cases145

(consisting of 4 different areas of interest and 3 different mosquito species), with146

different contextual constraints delivering high performance presented in Section 4.147

• Comparative study: due to the replicability of our framework that uses the same148

architecture and the same mathematical principles offers the extensive capability of149

comparative studies among different cases, responding to: “which characteristics150

seem important in one case and which in another?” as we can see in the comparative151

study of Section 4.152

To the author’s knowledge, this is the first time that a single data-driven architecture153

has predicted mosquito populations of different species in a way that tackles several154

MBDs simultaneously and is independent to the site of application thus presenting a155

high rate of transferability in different landscapes and climatic zones.156

In the remaining parts, the paper is organized as follows, Section 2 presents the157

collection, augmentation and prepossessing of the entomological and EO data. In Section158

3 a detailed description of the entire architecture with all the corresponding self-learning159

modules is given. Section 4 presents the case studies in which the system was applied160

and the corresponding performance is reported and analyzed. Section 5 is a discussion161

of the results and the next research steps.162

2. Datasets163

This section, presents the components of the preparation of the dataset. Includes164

the collection of the Earth Observation and the entomological data, as well as, their165

preparation to be used from the ML algorithms.166

Open EO Data167

The predictive model uses environmental variables (geographical, climatic, and168

hydrological) that influence the transmission cycle between pathogens, vectors and169

hosts.170

This study used remote sensing indices that have shown strong correlation with171

mosquito behaviour and biological cycle. To compute the satellite derived Normalized172

Indices, a number of the satellite’s band were used, namely the Near Infrared (NIR), the173

Red (RED), the Short Wave Infrared (SWIR) and the Green (GREEN) band as shown174

in formulas (1) - (4). The Normalized Difference Vegetation Index (1) (NDVI), the175

Normalized Difference Water Index (2) (NDWI), the Normalized Difference Moisture176

index (3) (NDMI), and the Normalized Difference Build-up Index (4) (NDBI) are used as177

proxies for vegetation density, changes in vegetation water content, determination of178

vegetation water content and mapping of built-up areas respectively. To quantify these179

environmental indicators for the period from 2010 to 2020, the satellite images Sentinel 2180

(10m GSD, 6-days revisit time) and Landsat TM 7 & 8 (30m GSD 16-day repeat cycle)181

were accessed and pre-processed. The images were resampled to a uniform grid of 500m182

x 500m to obtain a spatially harmonized dataset.183

NDVI =
(NIR− RED)

(NIR + RED)
(1)

NDWI =
(GREEN − NIR)
(GREEN + NIR)

(2)

NDMI =
(NIR− SWIR)
(NIR + SWIR)

(3)
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NDBI =
(SWIR− NIR)
(SWIR + NIR)

(4)

Temperature affects several processes associated with the mosquito as well as the184

rate of virus development within the vector is associated with warmer temperatures185

[24]. The MODIS sensor from TERRA & AQUA was used to estimate Land Surface186

Temperature (LST), which is estimated from top-of-atmosphere brightness temperatures187

from the infrared bands of the satellite’s sensors. The product incorporated into the188

model is the V6.0, which provides daily LST daytime and nighttime values and emissivity189

with a spatial resolution of 1 kilometer (km).190

Precipitation can have both, a positive effect on the larval carrying capacity of191

breeding sites and a negative effect on the mosquito reproductive cycle interrupting192

it by flushing away aquatic stages from container breeding sites. [25]. The Integrated193

Multi-satellitE Retrievals for GPM (IMERG) precipitation grid with a resolution of 0.1°194

x 0.1° was used to extract the daily precipitation on the day each trap was placed. The195

accumulated rainfall values for one week, two weeks before each trap’s date of placement196

as well as accumulated rainfall from the 1st of January of each year were also calculated.197

Meteorological Data198

High wind speed is correlated with lower abundances of infected mosquitoes in199

traps. It seems that in high wind speed situations the reduced flying and biting activity200

of mosquitoes lead to lower transmission rates of WNV [26]. The ERA-5 Land Search201

Results Numerical Weather Prediction product was used with a native spatial resolution202

of 0.1° x 0.1° (hourly u and v components at 10m). Further processing resulted in203

retrieving the hourly wind components from the relevant GRIB ERA5-Land file at the204

point-date level and calculating the daily min, max and mean values including the205

dominant wind direction.206

Auxiliary data207

Topography has been indicated as a significant factor in the transmission of MBDs,208

while it also influences the biotic conditions of different mosquito species and indicates209

the most suitable breeding sites. The Digital Elevation Model (DEM) product used to210

generate parameters such as elevation, slope and aspect was acquired from Copernicus211

LMS with a spatial resolution of 25 meters. For each point (trap station, WNV reported212

human case, village), the mean elevation, slope and aspect were calculated within a213

buffer zone of 1 km around the point. The buffer radius was determined based on the214

flight range of the Culex spp. [27].215

The challenge of processing big time series satellite data from different sensors at216

EU level and generating the relevant indices for the last 10 years was addressed by using217

the cloud-based geospatial processing platforms CREODIAS and Google Earth Engine218

(GEE). CREODIAS has been adapted to process big EO data, including a EO data storage219

cluster that allows live access to the entire Sentinel data collection at any time, without220

the need to submit a job to Cloud Archive and wait for it to become available. In turn,221

GEE is another big EO data analysis platform that has been used complementarily for222

the collection and processing of Landsat TM 7 & 8 and MOD11A1 V6 imagery by taking223

full advantage of the open source API Earth Engine Python and Earth Engine Catalog,224

enabling for fast computations.225

Remote sensing data preparation226

The multi-spectral satellite data obtained from various sensors with different spatial227

and temporal resolutions had to undergo spatial and temporal integration. The higher228

resolution satellite sensors have been pre-processed and spatially resampled to 500m by229

aggregating the information of the native pixel resolution of 30m GSD in case of Landsat230

TM 7 & 8 and 10m GSD in case of Sentinel 2. The MODIS the native spatial resolution231



Version June 8, 2021 submitted to Remote Sens. 6 of 24

of 1 km was resampled to 500m by splitting the pixel into 4 equal value pixels. To deal232

with the diverse revisit time of the satellites, the data have been temporally resampled233

following the every other week circle of the entomological collection, by choosing the234

last available record. Since the EO data used were optical, we had to set a time threshold235

for the last available record for missing values due to cloud coverage. Therefore, the time236

window to search for the last available value has been set to one week for the LST and to237

one month for the indices. If no data were found during this time window, the value238

was assigned as missing value. For each of the in total 19000 in-situ observations that239

were distributed in 4 countries, 21 EO variables were computed (see Table 6 in appendix240

for a detailed description of features). The term observation refers to one in-situ trap241

observation within a single time stamp. The EO variables were retrieved by processing242

big data with the volume of the satellite imagery approaching 200Tb.243

Entomological Network244

A systematic approach for entomological monitoring has been effective since 2010245

for Europe, collecting data from stable station networks. The entomological surveillance246

of the AOI in this work has made use of CDC-CO2 light traps and gravid traps, collecting247

mosquitoes each year on roughly every other week basis, identifying the total number248

of mosquitoes and the number of mosquitoes tested positive to the pathogen. As an249

example Figure 1 depicts the entomological network in the Veneto region of Italy.250

Figure 1. Veneto region in Northeast Italy (Top Left 10.62, 45.81 Bottom right 13.08, 44.94, Datum
WGS84). The entomological monitoring network of 140 traps of the Culex pipiens in the Veneto
region.

Data pre-processing251

Final datasets, formed after the integration of multi source data, suffered from252

inconsistencies / erroneous insertions that had to be tackled. Duplicates of records were253

removed, while missing values in the dataset were filled using the method of iterative254

imputation, by modelling each feature with missing values as a function of other features255

in a round-robin fashion [28].256

The range of several features varies a lot, which may be a problem when used with257

ML algorithms. The variance of the features with greater magnitude might contribute258

that much on the cost function and vanish the features with smaller magnitude. So a259

normalization from -1 to 1 was applied to the indexers, to ensure that all indexers will260

be treated equally from the learner.261
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3. MAMOTH Principles and Methodology262

In the usual supervised ML setting, we assume an initial dataset X consisting of a263

number of observations (rows) and a number of features (columns) called the feature-264

space. Additionally, each observation corresponds to a label/target variable y that265

should be estimated ŷ from the ML model f (·) by observing the input information X266

and a set of learnable parameters ϑ,267

f (X|ϑ) = ŷ . (5)

In our case, X is the set of EO and entomological features that we know, θ are the268

internal parameters of the model and ŷ is the prediction about the mosquito abundance269

for the upcoming period. The goal of the ML algorithm is to find, through the train-270

ing process the optimal learnable parameters ϑ of the model that minimize the cost271

between the real target of each observation and the corresponding estimated one. The272

aforementioned approach raises three fundamental modeling questions that should be273

specified: i) Cost function - What do we aim to solve? ii) Feature space selection - Which274

representation of the input is suitable for the optimization process? iii) Solver - How are275

we going to solve the optimisation problem?276

In this section, we present MAMOTH, a framework for Mosquitoes Abundance277

Prediction Model, by answering the above modeling questions. As mentioned (see278

introduction section), MAMOTH main characteristic is that the user does not have to279

specify the feature space of the observations or models hyper-parameters. Instead, an280

auto-calibrated model is created based on the proposed architecture described in Figure281

2 that receives the initial dataset and self-tunes its hyper-parameters. It decides which282

features to use build a custom prediction model that is meaningful for the AOI each283

time.284

MAMOTH’s Cost function285

We transform mosquitoes’ populations from a regression to an ordinal classification286

problem, that offers multiple advantages both in the technical domain and in dissemi-287

nating the results to a non-technical audience. Technically, this transformation makes288

our model more robust to outliers since the contribution of a single observation’s error289

is limited. In terms of dissemination, it helps a non-technical audience to understand290

the results e.g. “In the next two weeks the model expects a mosquito abundance class 8291

out of 10 for this region”, is more informative compared to “In the next two weeks, the292

model predicts an average of 183 Culex mosquitoes for this region”.293

Accordingly, the cost function aims to minimize the Mean Absolute Error (MAE)
between the real and predicted mosquito abundance classes.

MAE =
1
n

n

∑
i=1
|yi − ŷi| . (6)

It is worth mentioning that the results obtained with MAE criterion (and being presented294

in Section 4), are similar to the results obtained with the mean square error criterion295

for the cases studied so far. Due to the analytical properties of the mean square error296

criterion, the training of the model is computationally much lighter than with mean297

absolute error criterion, so it can be used when we need a fast re-training of the models.298

MAMOTH’s Feature space and solver299

From the initial feature space as described in Section 2, MAMOTH automatically300

decides on the proper number of features and the features themselves for every specific301

case (different mosquito species or different area). The solver of the model is relying on302

Gradient Boosting ML technique for regression. Gradient Boosting machines belong to303

a very powerful and popular family of ensemble techniques that combine numerous304

weak learners in order to produce a powerful learner [29]. The parameters that have305
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to be tuned are the max depth of the trees constructed and the number of estimators306

(number of trees) since our gradient boosting model relies on decision trees. Regarding307

the purpose of the parameters, the tree depth indicates the complexity capabilities of the308

algorithm, and the number of estimators refers to the quantity of estimators that will309

be used with the sequent estimator correcting the previous one. The hyper-parameters310

of the solver, as well as the selection of the feature space are automatically specified by311

MAMOTH as illustrated in the pipeline of Figure 2.312

Description of MAMOTH’s pipeline: As depicted in Figure 2 the model’s architec-313

ture consisted of 5 main modules i) Feature Expansion / Engineering ii) Pre-process iii)314

Parameters Grid iv) Feature Selection v) Model Selection. The main advantage of this315

architecture is that even if the final model is complex, each module, separately, is simple316

and its functionality is quite intuitive. This advantage is crucial for the implementation317

and the further evolution of the model.318

Initializer

Feature 
Selection

Models 
Validation

Final 
model

Init. train 
Dataset

Train Dataset

Validation 
Dataset

Feature
Expansion

Hyper-Grid

Expanded 
train Dataset

Figure 2. MAMOTH Pipeline Outline

Feature extraction / engineering Module319

The information that is already included in the dataset can be used/restructured320

to generate new features that are informative regarding the target variable in a more321

algorithm-friendly way. This process requires a strong understanding of the physical322

problem and a good knowledge of the related work to guide the selection of valuable323

features for the ML algorithms. This process involves various operations on the feature324

space, such as i) non-linear transformations, ii) linear and non-linear combinations, iii)325

temporal and spatial shifts, iv) moving averages, v) variables related to spatial clustering326

of the data, vi) strong components of PCA, vii) thresholds for variables. The goal is to327

provide a more extended pool of features to the next modules. Respecting the trade-off328

between information and complexity leads us to the most limited number of features329

that capture spatial and temporal information that could be useful for prediction. At330

this point it should be stated that removing this module out of the framework’s pipeline331

is possible, but based on our experiments this led to an average 20% decrease in the332

performance. The features used in this paper can be found in the Appendix in Table 6.333

Initialisation Module334

This module obtains as input the training set and starts the initialization of the335

training process i) Determine the mosquito abundance classes: Calculate the range of336

each abundance class and perform balance handling if needed. The range of each class is337

selected so that all classes have equal probability of selection. In this paper, the number338

of mosquito abundance classes is set to 10 ii) Target set: the optimal time distance for339

prediction according to the training set is selected or proposed to the user, e.g., predict340

the mosquito abundance for the next 15 days or 30 days. To determine the optimal341

time distance for the target set, a CDF (Cumulative Distribution Function) of the time342

distance of days between two consecutive observations was created and the minimum343

time distance that covers as much of the dataset as possible is selected. iii) Initial tuning:344

uses the most correlated features (according to Pearson correlation score) to make an345
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initial rough estimate on the hyper-parameters of the model in a gradient-based manner346

(max_depth, number of estimators).347

Hyper-parameters Grid Module348

It takes as input the initial estimate of the model’s hyper-parameters and generates349

parameters’ grid points around these values. For each of these points, the Feature350

Selection module outputs a single model. This stage is useful for further fine-tuning the351

model’s hyper-parameters. This module improves the overall performance of the model,352

but we should mention that in most of our experiments this improvement was less than353

7%. So, in case of limited computational resources, we can skip this module and build a354

mode directly in the initial estimation of the hyper-parameters of Initialisation Module.355

Features Selection356

For each point in the parameters’ grid, the system starts with the entire set of357

features, as specified in the feature extraction/engineering module, and uses recursive358

feature elimination and cross-validated selection to select both the optimal number of359

features in the feature space and the features themselves. In the feature elimination,360

the ranking of each feature is done according to the usual relative importance score361

[30]. Finally, we use the coefficient of determination, known as R2 score, in a 10-fold362

cross-validation set to select the model with the optimal number of features. This363

process slightly increases the complexity of the model (k-fold cross-validation is a linear364

operation in terms of resources) but makes the model more robust to randomness and365

bias.366

Model Selection367

Finally, each model of the grid point is evaluated with unseen validation data, and368

the final model is selected according to the mean absolute error criterion (optionally, this369

criterion can be changed to the mean squared error).370

The model’s predictions are assessed using the same metric as the cost function371

used during the training phase, the MAE. This metric indicates the distance between372

the actual class and the predicted class, which gives a simple intuition of the quality373

of the prediction. Another metric that can characterise the quality of the system is374

the percentage of predictions with an error equal to or less than 3 classes. This metric375

quantifies the percentage of the time that the predictions do not deviate too much.376

Computational cost377

A fundamental aspect of a machine learning model is the computational cost378

(complexity). Our framework uses a Gradient Boosting model as learner, so, is directly379

affected by decision tree cost which is equal to O(mnd) [31], where n is the number of380

observations in the training set, m is the number of features and d is the depth of the381

tree. Since Gradient Boosting Models construct M different decision trees the model’s382

computational cost is O(M(mnd)). The framework applies a greedy search for optimal383

features by training multiple gradient boosting models and recursively eliminating the384

least significant feature, this increases linearly the overall complexity with respect to the385

number of features toO(M(m2nd)). So the more the features available, the more gradient386

boosting models will be constructed, and thus the higher the overall computational cost387

will be. Hyper-parameters grid module can also add in computational cost due to the388

repetition of the above mentioned process, as it executes exhaustive search in a window389

(e.g. of 5× 5) around the initial hyper-parameters estimation (max_depth,number of390

estimators), this module multiplies the overall computational cost by a factor equal with391

the number of grid points (e.g. 25). It can be concluded that MAMOTH’s computational392

cost is affected quadratic by the number of features m used and linearly by the hyper-393

parameters tuning grid.394
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4. Experimentation395

In the Experimentation section we present the application of our framework to a396

total 5 different cases (three different mosquito species and four different areas). The397

cases cover scenarios that allow us to perform comparative analysis, such as the same398

mosquito species (Culex pipiens) in three different areas or two different mosquitoes399

species in the same area of interest.400

We applied MAMOTH to the Veneto region in Italy to predict the population of401

Culex pipiens. These predictions took place on the trap site, since the model uses the402

historical entomological data as input features in the training process. The models’403

performance was also tested for off-trap-site predictions with promising results, in this404

experiment the training of the model did not use past entomological information as405

input features.406

The validation of the framework was conducted in 2 different ways, operationally407

on last year’s data and pre-operationally. Operational validation is designed to imitate408

the real life conditions and pre-operationally validation operates on multiple random409

realisations (via k-fold validation) to verify that the received performance is not an410

outlier. More specifically on the Operational validation we test separately each month of411

2020. When testing on a specific month’s data, the rest of the data past this month will412

be completely ignored by the training process as they belong to the future and we know413

nothing about them. This process goes on iteratively to cover all available months of last414

year’s data. For example, if we want to predict the abundance of mosquitoes in July of415

2020, observations until July of 2020 will be used as training set, while observations past416

July will be completely ignored. This method was applied iteratively in a cross validation417

fashion to assess the model’s performance. Pre-operational validation is a classical 10-Fold418

cross validation method where all observations are taken into account without any time419

constraints. This process rules out any performance inconsistency due to a specific time420

series behavior and verifies that the results of the operational validation is not an outlier.421

Results showed that the two kinds of validations perform similarly, with pre-operational422

validation achieving slightly better results as expected. Also, we conducted experiments423

for a comparative study and we applied the framework in Vojvodina (Serbia) and Baden424

Wuerttemberg (Germany) to further test its performance for the abundance of Culex425

mosquitoes. We also extended the model to two other species, Anopheles spp. in Veneto426

(Italy) and Aedes albopictus in Grand-Est and Corsica (France). In all these cases, the427

results were promising and consistent.428

Area of interest and Entomological network429

The study area is located in Northeast Italy, at the Veneto region as depicted in430

Figure 1. The area includes the eastern part of the Alps and the northeastern part of the431

Po Valley. The average temperature during the period of interest had a mean value of432

25.4 degrees Celsius and the cumulative precipitation has been 30mm.433

The entomological monitoring of Culex pipiens in the Veneto region has been434

effective from 2010 to 2020, gathering data from a network of 140 stations and resulting435

in a dataset of more than 4800 observations.436

Table 1 presents class separation of the initialization module, the corresponding437

number of mosquitoes for each class as well as the probability of having at least one438

mosquito positive to WNV. It can be observed by Table 1 that the probability is mono-439

tonically increasing as the number of mosquitoes increases, which supports the claim440

that the higher the mosquito population the higher the WNV circulation and thus its441

dissemination in the community.442

In case of Culex mosquitoes in Italy nearly 80% of the observations had at most a 15443

days time distance between two consecutive observations of the same stations as shown444

in Figure 3. So the target of prediction was set to 15 days to keep as many observations445

as possible while keeping a reasonable prediction time in order to grant authorities time446

to take preventive actions against mosquitoes if needed.447
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Table 1: Culex Mosquito Risk Classes

Class Number of mosquitoes
Probability of at least one
mosquito positive to WNV Risk class

1 0 - 3
2 4 - 9 0.23 % low

3 10 - 18
4 19 - 34 1.07 %

5 35 - 58
6 59 - 100 2.82 %

medium

7 101 - 167
8 168 - 293 6.35 %

9 294 - 568
10 > 568 8.01 %

high

Figure 3. CDF of time difference in days between 2 consecutive observations for the case of Culex
Italy

Furthermore, the auto-calibration process was tuned to max_depth = 5, number448

of estimators = 23 and decided that the optimal number of features is 16. The selected449

features with their corresponding importance are presented in Figure 4.450

Figure 4. Feature Importance of Culex Italy case using both EO and entomological data

It is clear that the most important feature which affects mainly the prediction451

of mosquito abundance class, is the current mosquito population. Additionally, the452

accumulated mosquito populations of the running month seems to play an important453

role in the formation of the final prediction. Those two features are capturing the454
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temporality in an indirect way, the current state is very important for the upcoming455

state, and seems to be important in all Culex mosquito cases independent of the area456

of interest. Temporality is directly captured by the days distance from a certain date457

regardless of the year, indicating that the mosquito population is partly following a458

pattern. Besides the temporality and mosquito population though, presence of water459

is also a considerable factor as measurements on its different states are selected by460

the system by 3 different features (NDWI, two past weeks cumulative rainfall and461

cumulative from January rainfall). Temperature is also selected and represented by 2462

features, however affecting much lower in the final prediction than expected based on463

relevant literature which claims that temperature is one of the main contributor for the464

mosquito population. Spatiality expressed by the latitude and elevation of the trap site465

are also features that the system chose to make more accurate predictions.466

Culex Veneto Results467

The MAE for all the predictions is 1.27. The error distribution in Figure 5 shows that468

most of the errors are spread across a small range, meaning that 97% of the predictions469

are less or equal to 3 classes away from the actual class. Those promising results shows470

that the system’s predictions are most of the time very close to the actual mosquito471

population that we aim to predict.472

Figure 5. Error Distribution of Culex Italy case using both EO and entomological data

Error distribution among risk classes473

In the plot of error of each class in Figure 6, we can see that the model is performing474

similarly in all mosquito abundance classes, without any strong bias to low or to high475

abundance classes.476
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Figure 6. MAE per class of Culex Italy case using both EO and entomological data

Results per month477

The prediction error of each month is relatively equal, the MAE in June is higher478

due to smaller size of dataset and the lack of data, before May of 2020, thus training the479

model only upon data of previous years and not in recent observations. Respectively,480

the MAE of October is lower than the others, due to the training of the model in many481

more recent observations.482

Figure 7. MAE per month of Culex Italy case using both EO and entomological data

To validate the performance of the model except the operational application, the483

system was tested on random 10-fold validation using all the available data. The results484

showed slightly better behavior, in terms of MAE: 1.14, and similar performance in terms485

of percentage of error below 3 classes: 97%. This slight improvement can be explained486

by the fact that in the k-fold validation the samples for train and test process are selected487

uniformly from the entire dataset compared to the operational case where train and the488

test sets are totally separated in time. Those results are leading us to the conclusion that489

the performance of the model is stable according to train-test separation of the dataset.490

Performance without the Entomological features491

As depicted in Figure 4 the model relies a lot on the entomological features in order492

to predict the mosquito population for the upcoming period. The current number of493

Culex mosquitoes is the most important feature by far, while also the feature with the third494

highest relative importance score being the sum of Culex mosquitoes of the past 30 days495

and the fifth highest feature on the list is the mosquito population of the same month the496

previous year. The need of those entomological features could limit the wide use of the497
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model, once this information is known only on the trap-site. Away of the trap-sites this498

information will not been known. Thus, the question that we like to answer is, could the499

model perform reliably if those important entomological features are missing from the500

feature space?501

To test this hypothesis we removed all features relevant to entomological data502

and we re-training a new MAMOTH model using only EO data and features derived503

from them. The results showed that the model was still able to accurately predict the504

upcoming mosquito population with a small accuracy reduction compared to the model505

that used entomological features. The new MAMOTH model performed with 1.65 MAE506

and the percentage of errors below 3 classes was reduced to 92%. The wide applicability507

of a model that relies only on EO data, marks those results as promising for further508

research in that direction.509

As seen in Figure 8, the new model in order to fill the gap that was created by the510

absence of the entomological features, increased the total amount of selected features511

to 34 (compared to 16 of the model with the entomological features), along with the512

significantly increased importance of EO related features such as rainfall, LST, NDWI,513

NDVI, NDBI.514

Figure 8. Feature importance of Culex Italy case using only EO data

Performance without the EO features515

As mentioned above, even in lack of entomological data, MAMOTH was still able to516

predict the upcoming mosquito abundance using only EO data and features derived by517

them. However, for the sake of completeness, it is of great importance to investigate the518

performance of the framework without using any EO data. To test the performance of the519

framework without the presence of EO data, we removed all the related EO features. The520

results showed that the performance of the model was a slightly decreased comparing521

to the previous case where EO and entomological data were available. More specifically522

the error climbed up to 1.34 and the percentage of errors below 3 classes was reduced to523

94% using 15 features.524

As we can see in Figure 9 the model basically relies on the current mosquito525

population and the seasonality of the observation in order to deliver accurate predictions.526

This version of the model points out the significance of the entomological data, as527

without any EO information available the performance of the model was not deviating528

much from the initial model with EO and entomological information available. However,529

even in lack of them, a similar result can be achieved using only EO data.530
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Table 2: Final data-set of each case

Area of interest - Mosquito Year # of traps # of observations
Italy - Culex pipiens 2010 - 2020 140 4840

Serbia - Culex pipiens 2010 - 2019 124 926
Germany - Culex pipiens 2010 - 2019 86 3763

France - Aedes Albopictus 2017 - 2019 81 1729
Italy - Anopheles spp. 2010 - 2020 130 629

Figure 9. Feature importance of Culex Italy case without using any EO data

Other cases531

MAMOTH was trained and validated with respect to its generic character and532

robustness in different cases of mosquito species and engaged regions (landscapes).533

Specifically, the model was implemented and returned high performance in (a) Serbia534

for the Culex pipiens (WNV), (b) Germany for the Culex pipiens (WNV), (c) Italy for535

the Anopheles spp. (Malaria), (d) France for the Aedes albopictus (Zika, Chikungunya,536

Dengue).537

Figure 10 depicts the areas of interest, and Table 2 presents the main characteristics538

of each data collection.539

Table 3 presents cumulatively the performance of MAMOTH to the aforementioned540

cases. The results clearly reveal that indeed the MAMOTH framework is generic and541

easily replicable to other cases. It is also shown that although the auto-tuned parameters542

are varying in the different use cases, the performance of the models remains stable and543

high with the maximum accuracy being returned in the case of Aedes Albopictus in544

France, where the MAE is surprisingly low.545

Table 7 also presents the performance of MAMOTH to the aforementioned cases,546

but this time using only environmental data, proving the claims that the proposed547

framework is also applicable to regions without any previous knowledge of the current548

entomological situation, while Table 8 presents the performance of MAMOTH without549

any EO data available. Both of these tables can be found in the appendix Section.550

The 13 most important features, selected by MAMOTH, and their corresponding551

importance for each case of interest are presented in the Table 4. Also Table 5 presents the552

5 five most significant features per PCA component, so as to provide all the information553

needed for drawing accurate conclusions. By comparison between the different cases554

we can draw some insights:555

• For all cases previous mosquito populations seem to play a preponderant role as is556

expected for the seasonal development of mosquito populations during summer557

months depending on the intensity of mosquito control applications in the AOI.558
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(a) Vojvodina province, Northern Serbia (Top
Left 18.84, 41.85 Bottom right 23.00, 46.81 Da-
tum WGS84).

(b) Baden Wuerttemberg, Germnay (Top Left
7.58, 48.06 Bottom right 8.67, 50.03 Datum
WGS84)

(c) Veneto region, Northeast Italy (Top Left
18.52, 46.09 Bottom right 21.47, 44.89 Datum
WGS84).

(d) Grand-Est and Corsica regions, France (Top
Left 10.64, 44.90 Bottom right 13.02, 45.99 Da-
tum WGS84).

Figure 10. The entomological networks of all cases

Table 3: MAMOTH’s performance per country

Area of interest
Mosquito

Auto-tuned
model parameters

Performance in
pre-operational

validation

Performance in
operational validation

Serbia Culex spp.
Nb of features = 12
Nb_estimators = 23
Max_depth = 4

MAE_test = 1.54
MAE_train = 1.27
% error < 3 = 90%

-

Germany Culex spp.
Nb of features = 33
Nb_estimators = 23
Max_depth = 4

MAE_test = 0.97
MAE_train = 0.87
% error < 3 = 92%

MAE_test = 1.19
% error < 3 = 90%

Italy Anopheles spp.
Nb of features = 47
Nb_estimators = 20
Max_depth = 8

MAE_test = 1.47
train = 1.04

% error < 3 = 95%

MAE_test = 1.60
% error < 3 = 95%

France Aedes albopictus
Nb of features = 11
Nb_estimators = 15
Max_depth = 6

MAE_test = 0.71,
MAE_train = 0.63
% error < 3 = 92%

MAE_test = 1.08
% error < 3 = 95%

Italy Culex spp.
Nb of features = 16
Nb_estimators = 23
Max_depth = 5

MAE_test = 1.14,
MAE_train = 1.01
% error < 3 = 97%

MAE_test = 1.27
% error < 3 = 97%
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Table 4: Most important features per case

Aedes - France Anopheles - Italy
feature names importance feature names importance

mosq_now 0.501 days_distance 0.314
lst_night 0.089 mosq_now 0.188
lst_day 0.079 DEM_1000 0.054

ndwi_mean 0.073 PCA_3 0.041
mosq_month_previousYear 0.053 Slope_1000 0.038

ndwi_std 0.043 ndwi 0.027
acc_rainfall_jan 0.042 lst_day 0.025

ndwi 0.041 ndvi_mean 0.024
PCA_2 0.029 celsius 0.024
PCA_3 0.027 ndvi_std 0.021
mo_cos 0.023 y 0.020

LST_jan_mean 0.017
mosq_month_sum 0.014

Culex - Serbia Culex - Germany
feature names importance feature names importance

mosq_month_sum 0.265 mosq_now 0.675
days_distance 0.257 days_distance 0.095

mosq_now 0.187 mosq_bins 0.049
acc_rainfall_jan 0.083 acc_rainfall_2week2 0.039
LST_Mar_mean 0.039 acc_rainfall_jan 0.027

DEM_1000 0.036 acc_rainfall_1week 0.022
acc_rainfall_2week2 0.036 mo_cos 0.014

Slope_1000 0.027 LST_Apr_mean 0.014
max_wind 0.022 ndwi_mean 0.011

mosq_month_previousYear 0.021 LST_Jan_mean 0.005
PCA_2 0.016 x 0.005
celsious 0.011 Aspect_1000 0.004

mosq_month_sum 0.004

• The accumulated rainfall from the beginning of the year is important for all the559

cases, and for the cases of Culex spp., the accumulated rainfall of the last two weeks560

seems important as well.561

• In all Culex spp. cases, the rainfall and the water indices, NDWI, are more important562

than the temperature, LST563

• Anopheles is the only mosquito genus in which the most important feature is564

not the previous state of the mosquito population but the direct time distance as565

well as several geomorphological features which could indicate the preference of566

mosquitoes of this genus of stagnant water surfaces in specific altitudes.567

• Aedes albopictus prediction is the only case were the direct time distance is not568

important for the model. Furthermore, the Aedes albopictus populations seem to be569

very sensible to temperature, more than to precipitation, while both are important570

factors for the creation and durability of breeding sites for this container breeding571

species.572

• NDWI metrics are very important for the prediction of Aedes albopictus popula-573

tions compared with the other mosquito species.574

Tables 9 and 10 that present the most significant feature per case using only EO575

data and without using any EO data respectively can be found in the appendix Section.576

5. Discussion / Conclusions577

In this paper we saw that it is feasible to develop a generic machine learning model578

that predicts mosquito populations without any special design regarding the area of579

interest or the mosquito species. We prove that this approach achieves accurate and reli-580

able performance, by relying on common satellite and entomological data. Additionally,581
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Table 5: PCA features most significant components per case using both EO and entomo-
logical data

Area of interest
Mosquito PCA_1 PCA_2 PCA_3

W_area_1km Flow_acc_1000 Coast_dist_1000
Coast_dist_1000 W_area_1km W_area_1km
Flow_acc_1000 Coast_dist_1000 lst_night

WC_L_1km lst_night Flow_acc_1000
Italy Culex spp

WC_dist_1000 WC_L_1km WC_L_1km
PG_area_1km Coast_dist_1000 Flow_acc_1000
Flow_acc_1000 lst_night WC_dist_1000

Coast_dist_1000 mosq_month_previousYear WC_L_1km
WC_L_1km WC_dist_1000 mosq_month_sum

Serbua Culex spp

lst_night PG_area_1km mosq_now
Flow_acc_1000 mosq_month_sum lst_day
LST_Mar_mean mosq_now lst_night

lst_day lst_night LST_Apr_mean
LST_Feb_mean acc_rainfall_jan mosq_month_sum

Germany Culex spp

LST_Apr_mean lst_day LST_Mar_mean
W_area_1km Flow_acc_1000 Coast_dist_1000

Coast_dist_1000 Coast_dist_1000 W_area_1km
Flow_acc_1000 W_area_1km Flow_acc_1000

WC_L_1km WC_L_1km WC_L_1km
Italy Anopheles spp.

mosq_month_sum WC_dist_1000 WC_dist_1000
Coast_dist_1000 PG_area_1km Flow_acc_1000
PG_area_1km Flow_acc_1000 PG_area_1km
WC_L_1000 Coast_dist_1000 WC_L_1km

Flow_acc_1000 WC_L_1km LST_Jan_mean

France
Aedes Albopictus

lst_day DEM_1000 Coast_dist_1000

this direction gives us the opportunity of comparative study between different areas or582

mosquitoes.583

The results show that indeed the model manages to be auto-calibrated for the584

different cases by selecting different features and parameters. Additionally, our approach585

offered the capability of comparative studies and the extraction of valuable information,586

which without that generic and unified approach could not have been possible.587

Furthermore, the results of MAMOTH for predictions away of the trap-site, if588

the model is trained only upon environmental and not past entomological data, were589

promising, as the performance did not deviate much from the initial model. Thus, even590

in lack of entomological data, the system remains robust and able to predict mosquito591

populations. This variation of the system offers a more flexible model applicable even to592

communities that do not have dense entomological networks, once the model can extrap-593

olate the mosquitoes abundance between the traps. However the use of entomological594

data offers valuable information to the model enabling for more accurate predictions.595

An important difference between the two models, however, is the number of features596

selected by the model. In the second case where only EO data are used, the number597

of features is significantly larger. This direction of research is quite promising once the598

off-trap site prediction increases massively the applications of the model.599
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Appendix705

Table 6: Feature List

Feature Explanation
dt_placeme Date of the observation
stationid Station ID
x Longitude
y Latitude
mosq_now Mosquito population in trapping sites at the date of observation

NDVI
Proxy for the vegetation density and distribution.
Extracted pixel value of overlapping station ID coordinates

NDVI_mean
Proxy for the vegetation density and distribution.
Mean value of neighboring pixels (window of 3x3)

NDVI_std
Proxy for the vegetation density and distribution.
Standard deviation of neighboring pixels (window of 3x3)

NDWI
Proxy for changes in water content
Extracted pixel value of overlapping station ID coordinates

NDWI_mean
Proxy for changes in water content
Mean value of neighboring pixels (window of 3x3)

NDWI_std
Proxy for changes in water content
Standard deviation of neighboring pixels (window of 3x3)

NDMI
Proxy for determination of vegetation water content
Extracted pixel value of overlapping station ID coordinates

NDMI_mean
Proxy for determination of vegetation water content
Mean value of neighboring pixels (window of 3x3)

NDMI_std
Proxy for determination of vegetation water content
Standard deviation of neighboring pixels (window of 3x3)

NDBI
Proxy for mapping urban built-up areas
Extracted pixel value of overlapping station ID coordinates

NDBI_mean
Proxy for mapping urban built-up areas
Mean value of neighboring pixels (window of 3x3)

NDBI_std
Proxy for mapping urban built-up areas
Standard deviation of neighboring pixels (window of 3x3)

LST_day Land surface temperature at day
LST_night Land surface temperature at night
LST_Jan_mean Mean temperature in January
LST_Feb_mean Mean temperature in February
LST_Mar_mean Mean temperature in March
LST_Apr_mean Mean temperature in April
wind_max Max magnitude of wind
wind_mean Mean magnitude of wind hourly
wind_min Min magnitude of wind

acc_rainfall_1week
Accumulated precipitation counting towards
one week before the date of placement

acc_rainfall_2week2
Accumulated precipitation counting towards
two weeks before the date of placement

acc_rainfall_jan
Accumulated precipitation counting
from the 1st of January of each year

WC_L_1km
Combination of breeding site length and water course of national
hydrological data within a buffer zone of 1000 m around each
sampling/trapping site

PG_area_1km
Total area of temporarily inundated areas (polygons)
within a buffer zone of 1km from each sampling/trapping site
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Feature Explanation

DEM_1000
Mean elevation (resolution = 12.5 m),
within a buffer of 1000m around trapping sites

Aspect_1000
Mean aspect (12.5 m),
within a buffer of 1000 m around trapping sites

Slope_1000
Mean slope (12.5 m),
within a buffer of 1000 m around trapping sites

Coast_dist_1000
Mean Distance of sampling/trapping site
within a buffer of 1000m from coastline

WC_dist_1000
Distance of combination of breeding site length and length of
watercourses of national hydrological data within a buffer zone
of 1000m around each sampling/trapping site

Flow_acc_1000
Mean flow accumulation within a buffer of
1000 around trapping sites

mosq_month_sum Cumulative mosquito population of the past 30 days
mosq_month_previousYear Cumulative mosquito population of the month on previous year
mosq_bins Mosquito bin based on the population on the date of observation

days_distance
Time difference in days between the date of
placement and a specific date regardless the year

province (multiple features)
Province in which trap is located (transformed in one hot encoded
features out of the names of the provinces of each region)

mo_cos Cosine transformation of the month of date of placement
mo_sin Sine transformation of the month of date of placement
celsius LST_day to celsius conversion
summer_days_year Days with over 30o celsius within the year
summer_days_month Days with over 30o celsius within the month
PCA components 3 PCA components extracted from the whole dataset

distance
Euclidean distance of coordinates between
a specific point and the trap site

Table 7: MAMOTH’s pre-operational applications and performance per country using
only EO data

Area of interest
Mosquito

Auto-tuned
model parameters

MAE in
Nb classes

Prediction < 3
classes error

Serbia Culex spp.
Nb of features = 37
Nb_estimators = 11
Max_depth = 14

test=1.88, train=0.81 87%

Germany Culex spp.
Nb of features = 22
Nb_estimators = 31
Max_depth = 4

test=1.18, train=1.07 89%

Italy Anopheles spp.
Nb of features = 51
Nb_estimators = 33
Max_depth = 6

test=1.48, train=0.54 94%

France Aedes albopictus
Nb of features = 42
Nb_estimators = 20
Max_depth = 14

test=0.72, train=0.96 87%

Italy Culex spp.
Nb of features = 34
Nb_estimators = 27
Max_depth = 9

test=1.20, train=0.60 96%
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Table 8: MAMOTH’s pre-operational applications and performance per country without
using any EO features

Area of interest
Mosquito

Auto-tuned
model parameters

MAE in
Nb classes

Prediction < 3
classes error

Serbia Culex spp.
Nb of features = 3
Nb_estimators = 20
Max_depth = 7

test=1.73, train=1.18 86%

Germany Culex spp.
Nb of features = 4
Nb_estimators = 28
Max_depth = 4

test=1.04, train=0.99 90%

Italy Anopheles spp.
Nb of features = 20
Nb_estimators = 26
Max_depth = 9

test=1.54 train=0.27 92%

France Aedes albopictus
Nb of features = 13
Nb_estimators = 26
Max_depth = 3

test=0.74, train=0.63 91%

Italy Culex spp.
Nb of features = 15
Nb_estimators = 24
Max_depth = 8

test=1.16, train=0.76 95%

Table 9: Most important features per case without using EO data

Aedes-France Anopheles-Italy
feature names importance feature names importance

mosq_now 0.561 days_distance 0.303
days_disance 0.200 mosq_now 0.209

PCA_3 0.049 distance 0.077
mosq_monh_sum 0.040 mosq_monh_sum 0.077

PCA_1 0.035 mosq_monh_previousYear 0.072
PCA_2 0.031 PCA_3 0.071

x 0.026 PCA_1 0.067
y 0.022 PCA_2 0.063

mo_sin 0.017 Treviso 0.012
mosq_month_previousYear 0.015 Padova 0.010

distance 0.004 Rovigo 0.009
HAUE-CORSE 0.000 mosq_bins 0.009

mosq_bins 0.000 Venezia 0.008
Vicenza 0.004
mo_sin 0.002
Verona 0.002
Gorizia 0.002
mo_cos 0.002

Pordenone 0.001
Udine 0.000

Culex-Serbia Culex-Germany
feature names importance feature names importance

PCA_1 0.397 mosq_now 0.592
days_distance 0.388 mosq_bins 0.223

mosq_monh_previousYear 0.215 mo_cos 0.105
PCA_3 0.079
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Table 10: Most important features per case using only EO data

Aedes-France Anopheles-Italy
feature_names importance feature_names importance

x 0.150 days_distance 0.274
lst_night 0.137 DEM_1000 0.082
PCA_2 0.059 PCA_3 0.049
ndwi 0.055 ndwi 0.041
ndvi 0.039 Slope_1000 0.039

acc_rainfall_2week2 0.038 LST_Jan_mean 0.038
ndvi_std 0.038 PCA_2 0.038

days_distance 0.035 ndwi_std 0.033
ndwi_mean 0.034 ndvi_std 0.032

PCA_1 0.033 ndvi_mean 0.026
ndmi 0.031 lst_night 0.023

ndbi_mean 0.030 acc_rainfall_jan 0.023
PCA_3 0.028 ndwi_mean 0.023

acc_rainfall_jan 0.026 celsius 0.021
ndvi_mean 0.024 lst_day 0.021

summer_days_month 0.024 acc_rainfall_2week2 0.019
ndwi_std 0.022 acc_rainfall_1week 0.016

acc_rainfall_1week 0.021 y 0.015
ndmi_mean 0.021 ndmi 0.014

distance 0.020 ndvi 0.014
Culex-Serbia Culex-Germany

feature_names importance feature_names importance
days_distance 0.118 acc_rainfall_jan 0.343

acc_rainfall_1week 0.076 days_distance 0.158
mean_wind 0.071 y 0.155

acc_rainfall_jan 0.063 distance 0.058
PCA_3 0.037 acc_rainfall_2week2 0.054

y 0.035 mo_cos 0.025
PCA_2 0.034 x 0.023

DEM_1000 0.034 ndmi_mean 0.023
lst_night 0.029 WAW 0.020
PCA_1 0.027 lst_night 0.017

Aspect_1000 0.027 acc_rainfall_1week 0.015
ndwi_std 0.027 ndvi_std 0.014

max_wind 0.025 ndmi 0.013
ndvi_mean 0.024 DEM_1000 0.011

LST_Jan_mean 0.023 LST_Apr_mean 0.011
acc_rainfall_2week2 0.022 LST_Jan_mean 0.011

Slope_1000 0.020 PCA_3 0.011
ndwi 0.020 ndwi 0.009

Sremski 0.018 ndwi_mean 0.009
LST_Feb_mean 0.018 celsius 0.007
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