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Abstract. Two techniques, integrating texture and spatial context properties for
the classification of fine spatial resolution imagery from the city of Athens (Hellas)
have been tested in terms of accuracy and class specificity. Both techniques were
kernel based, using an artificial neural network and the kernel reclassification
algorithm. The study demonstrated the high potential of the kernel classifiers to
discriminate residential categories on 5 m-spatial resolution imagery. The overall
accuracy percentages achieved were 73.44% and 74.22% respectively, considering
a seven-class classification scheme. The adopted scheme was subset of the nomen-
clature referred to as ‘Classification for Land Use Statistics Eurostat’s Remote
Sensing programme’ (CLUSTERS) used by the Statistical Office of the European
Communities (EUROSTAT) to map urban and rural environment.

1. Introduction

Information on land use is very important to support management and planning
activities in urban areas. Traditional methods like ground surveys and aerial photo-
graphy typically provide a lot of the needed information. However, they are costly
and difficult to apply in a systematic way. Alternatively, researchers have suggested
the use of satellite sensor imagery (Foster 1985, Jensen and Cowen 1999), because
it provides regular and up-to-date information in a variety of spectral, spatial and
temporal resolutions at lower cost rates.

Most of the studies relating to urban mapping aim to identify interpretation
techniques, which account for the urban complexity in relation to the data spatial
resolution. This is because these two factors affect the essential use of remotely
sensed data in urban studies (Barnsley and Barr 1996). Examples in using Landsat
MSS and TM data or Landsat sensor with SPOT HRYV data in urban classifications
are reported in various studies (Khorram et al. 1987, Martin and Howarth 1989).
However, their results were not that encouraging regarding class specificity and
accuracy and this is attributed to the coarse spatial resolution of the imagery.

The same problems regarding class specificity and accuracy are observed even
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by using finer spatial resolution imagery (5 m or less) from recently developed sensors.
This is due to the fact that urban areas are depicted as complex spatial arrangements
of different land cover types resulting in a considerable spectral heterogeneity.
Therefore class separation becomes a difficult task especially when classification is
treated on a per-pixel fashion. For this reason it was decided to experiment with
techniques, which incorporate image texture properties and account for the spatial
dispersion of individual scene elements within a kernel (Hodgson 1998). Such tech-
niques have been studied in the past on coarser resolution data (Peddle and Franklin
1991, Gahegan and Flack 1996, Ryherd and Woodcock 1996, Paola and
Schowengerdt 1997). In the frame of this study the potential of two such kernel
based approaches for the classification of 5 m-spatial resolution IRS-1C sensor data
has been tested, using as input multi-temporal imagery from the metropolitan area
of Athens (Hellas).

2. Scope of the study

The study was realised in the frame of a pilot project aiming to identify the
extent by which the requirements of EUROSTAT for statistical information over
urban areas can be met using fine spatial resolution imagery. Between the main
objectives of the study was to examine classification techniques capable to identify
settlement patterns of varying residential density, mixtures of built up and vegetative
areas, pure vegetation classes, industrial and transportation categories. Table 1 illus-
trates the classification scheme used. It is a subset of the four levels CLUSTERS
nomenclature used by EUROSTAT. ’

3. Input data and pre-processing
Multi-spectral IRS-1C LISS-IIT and Panchromatic images with spatial resolution
of 25m and 5m respectively, acquired on 25 November, 1996 as well as on 23 April,

Table 1. Subset of the CLUSTERS nomenclature. Shaded cells describe the seven-class
classification scheme used in the study.

Level 1 Level 11 Level 111 Level 1V

All classes Al Residential areas All Residential areas Al11l  Continuous
and dense
residential

A112  Continuous
residential of

moderate
density
A113  Discontinuous
. residential
of moderate
. density
A2 Industrial & A20 Industnal &
Commercial Commercial
A3 Transport A30  Transport
A4  Land for AS0  Land for A502  Sport facilities
recreational recreational
purposes purposes

A503  Green or leisurc
areas
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1997 were used. The images were ortho-rectified and corrected from radiometric and
atmospheric distortions. By merging IRS-1C LISS-III with Panchromatic data,
enhanced multi-spectral 5 m-spatial resolution images were produced.

Training data for classification purposes were selected within irregularly shaped
regions. They were sampled systematically within the image to be representative to
the complete spectrum of land use classes. The training samples were generated from
contiguous groups of pixels belonging to spectrally distinct land cover classes, defin-
ing in general multi-modal pixel distributions. The training sites were extracted
manually with the help of aerial photography on the false colour composite imagery.
These samples were digitised on the screen and they were divided to two groups for
training and testing the classification.

4. Kernel classifiers

The application of the maximum likelihood (ML) classifier on the two-date
multi-spectral and enhanced spatial resolution imagery resulted in severe misclassi-
fications. Indeed, the LEVEL IV residential classes were classified with low accuracy
percentages ranging from 8% to 29%. As a parametric classifier the ML algorithm
relied on each training sample being represented by a Gaussian probability density
function. However, the existing spectral variability of the classes led to the generation
of multi-modal statistics, which inevitably resulted in the observed misclassifications.
It should be noted that not even classes of LEVEL II were discernible and all
residential classes were classified as one mixed class. Figure 1(a) illustrates the ML
classification results for a subset of the study area.

Unlike the ML pixel based classifier the use of kernel based algorithms resulted
in accurate estimates with lower percentage classification errors even for LEVEL IV
classes. Two kernel classification techniques have been tested in the frame of the
study using a back propagation neural network (NN) and the kernel reclassification
algorithm (Barnsley and Barr 1996). The classification map provided by the NN
application is shown in figure 1(b).

4.1. The artificial neural network approach

Neural network classifiers offer advantages in cases where insensitivity against
noisy and redundant information as well as independence from Gaussian distribu-
tions is required. The network configuration permits to.handle complex classification
tasks when conventional classifiers reach their limits (Benediktsson et al. 1990, Paola
and Schowengerdt 1995).

With the aim of defining meaningful image combinations for an accurate NN
classification and optimum kernel sizes for the extraction of characteristic texture
patterns, unsupervised classification experiments were conducted using the topolo-
gical map network algorithm (Kangas et al. 1990). The algorithm was applied for a
variety of kernel sizes and input image combinations. These experiments demon-
strated that acceptable residential class discrimination was achieved when multi-date
multi-spectral and enhanced spatial resolution imagery was classified using kernels
of 5 pixels by 5 pixels and larger. This configuration was adopted during supervised
back-propagation NN classification.

The architecture of the network was based on former experience. In general a
four layer fully interconnected network is sufficient and it is the most common
implementation seen in the literature for the classification of multi-spectral imagery
(Paola and Schowengerdt 1995, Long Dai and Khorram 1999). The number of
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Figure I Classification maps resulted from the application of the (@) ML, and (b) NN
algorithms. The resulted land use map appropriately refined with the help of ground
data and ancillary information is illustrated in figure I1(c). The pixel-based approach
did not succeed to classify residential density categories and most of them were
returned as one mixed class (grey arcas). In contrast kernel based classifications
returned single residential classes (figure [(h)). The illustrated arca is approximately
75 km? and it is located at the north cast of the Athens centre.
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hidden nodes was determined by iterative trails during the training procedure. This
resulted in the 6-14-26-7-layer configuration, since it guaranteed the best network
learning capability. Various classifications with different kernel sizes (3 by 3,5 by S5,
7 by 7, etc) were conducted and the output maps were compared against the ground
data. These experiments showed that a kernel 7 by 7 was best suited, since higher
level classification accuracy percentages were obtained for the LEVEL IV-classes
and at the same time elongated structures and class boundaries were kept undistorted.
Moreover the computational demands retained at a reasonable level. Table 2(a)
summarises the classification results for each class, as well as the overall classification
accuracy achieved for the seven LEVEL IV-classes (73.40%).

4.2. The kernel reclassification algorithm

The kernel reclassification algorithm derives information on urban land use in
two stages. The first involves labelling of the image pixels into single land cover
classes using a pixel based clustering algorithm. In a second stage, the pixel labels
are grouped into discrete land use categories on the basis of their frequency of
occurrence and spatial arrangement within a kernel. The basic assumption underlying
this approach is that individual categories of land use classes are characteristic

Table 2. Confusion matrices resulted from the application of the NN and kernel
reclassification algorithms.

(@) Back-propagation NN classification results

Producer’s  User’s
Classified accuracy  accuracy

Alll  A112  Al13 A20 A30 A502  A503 totals (%) (%)

Alll 2291 420 24 402 1 9 0 3147 91.02 72.80
All2 224 2389 389 70 323 26 0 3421 77.14 69.83
Al13 0 288 1754 18 90 23 396 2569 64.91 68.28
A20 1 0 0 330 0 0 0 331 39.19 99.70
A30 1 0 0 0 495 0 0 496 49.55 99.79
A502 0 0 18 0 0 351 0 369 75.32 95.12
A503 0 0 517 22 90 57 1796 2482 81.93 72.36
Reference 2517 3097 2702 842 999 466 2192 12815  Overall Classification
totals Accuracy =73.40%

{b) Kernel reclassification algorithm results

Producer’s  User’s
Classified accuracy  accuracy

ATt AlI2  A113 A20 A30  AS02  AS03 totals (%) (%)
Alll 2365 408 5 373 70 8 0 3229 93.96 73.24
All2 145 2511 371 48 322 17 0 3414 81.08 73.55
All3 0 176 1889 73 216 30 378 2762 69.91 68.39
A20 2 1 0 303 3 0 0 309 35.99 98.06
A30 5 1 0 0 295 0 0 301 29.53 98.01
AS02 0 0 12 0 0 389 55 456 83.48 85.30
AS03 0 0 425 45 93 22 1759 2344 80.24 75.04

Reference 2517 3097 2702 842 999 466 2192 12815 Overall Classification
totals Accuracy =74.22%,
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spatial mixtures of spectrally distinct land cover classes. An overview of this technique
is given in Barnsley and Barr (1996).

The first segmentation into discrete land cover labels was generated by the
application of a standard ISODATA unsupervised clustering on the two-date multi-
spectral and enhanced spatial resolution imagery. In the following the pixel labels
were related to land cover classes by photo-interpretation. This rendered a classifica-
tion in five broad land cover classes: ‘active vegetation’, ‘open field’, ‘street’, ‘building’,
and ‘bare soil’. The fact that training data were not representing single land cover
classes but entire areas of specific land uses prevented the application of a parametric
supervised classification for land cover map generation. Unsupervised clustering for
the initial low-level image segmentation has been employed in similar studies as well
(Wharton 1982).

The kernel reclassification algorithm, focuses on the calculation of the so called
‘adjacency event’ matrix. The value of each ‘ij’ element of this matrix denotes the
frequency with which pixels belonging to land cover classes ‘I’ and ¢’ occur one
adjacent to other in the area defined by a kernel, that scans the image. Similarly
during training the kernel is passed over the representative sampled areas, which are
of the same size as the scanning kernel, and the corresponding ‘training or template’
matrices are calculated. During classification the adjacency-event matrix which is
calculated for each new position of the kernel is compared with each of the template
matrices and the land use category defined by the template matrix which best match
the current adjacency-event matrix is assigned to the central pixel of the kernel.

During training effort was placed to determine kernel sizes suitable for texture
discrimination and define representative template matrices for each land use. This
procedure demonstrated that residential class separation was possible by using
kernels of 9 pixels by 9 pixels wide and larger. However with the aim to retain linear
features undistorted, an 11 pixels by 11 pixels kernel was finally selected for the
classification. Additionally, in order to estimate the algorithm’s computational
demands as a function of the kernel size, a much larger kernel of 25 pixels by 25
pixels was also used. These experiments demonstrated that the selection of the 11
by 11 pixels kernel was better by far regarding classification accuracy and computa-
tional requirements. The overall classification accuracy estimated over the seven
LEVEL IV-classes was 74.22%. A detailed presentation of the relevant classification
results is given in table 2 (b).

5. Conclusions

Kernel classification techniques proved to be useful for the classification of
residential density classes on 5 m-spatial resolution imagery. In contrast the pixel
based ML classifier returned most of these classes as one mixed class. Kernel based
classifiers closed this gap and classified directly residential classes with high level
accuracy. The classification accuracy was linked to the kernel size and for this reason
further research is currently conducted to identify optimum functional relations
between classification accuracy, land use class specificity, kernel sizes and image
spatial resolutions.

In respect to the different image combinations it was concluded that mulu-
temporal sets of enhanced spatial resolution images was by far the best input for
kernel classifications as they provide significant spectral and texture information.
However, new approaches accounting for image structural properties should be
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envisaged especially nowadays that new generation satellite sensor imagery of
I m-spatial resolution is available (e.g. IKONOS-2).
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