High Resolution Satellite Imagery for Urban Mapping

Mapping Athens from Space

The use of high altitude aerial photography for mapping and updating of GIS databases in urban areas is costly and leads to serious delays. Coming high resolution satellite imagery will provide much more detail than before. The superior geometric properties of the imagery permits accurate mapping of land use patterns. The new generation of satellite images will adequately complement and partly supersede conventional mapping approaches based on photogrammetry and field survey methods.

By C. C. Kontoes, National Observatory of Athens, Institute for Ionospheric and Space Research

The potential of high spatial resolution satellite imagery for urban environmental purposes is high. The current and upcoming high resolution satellite data can complement and, in some cases, replace high altitude aerial photography for the production of land use maps at medium and larger scales (up to 1:10,000).

Airborne Versus Space

Current techniques for land use identification and mapping within urban zones are based upon the use of high altitude aerial photography (1:30,000 to 1:40,000-scale photos). Although this is an accurate technique for large scale mapping, it is not easy to apply because:

- The analyst needs to be capable of handling effectively large volumes of image files (scanned aerial photos) and large numbers of photo diapositives to cover an area equivalent to the satellite image footprint, e.g. an IRS-1C P scene, covers approximately an area of 5,300 km², which is equivalent to 210, 1:40,000-scale aerial photographs.
- Block adjustment of large volumes of aerial photographs needs specialised facilities (Digital/Analytical/Analogue Photogrammetric stations) and highly skilled personnel.
- Aerial photography acquisition requires time for organisation and often the end product delivery is guided by national security laws; bureaucratic procedures lead to delays.
- The cost for ortho-photo map production is relatively high compared to the ortho-rectification of high resolution satellite imagery. Commonly, the cost for 1:40,000 aerial photography acquisition is approximately 10 Euros per km². In addition, block adjustment, ortho-rectification and mosaicking range in cost between 10-15 Euros per km². Thus, to cover an area seen by one IRS-1C P full scene, a total budget ranging between 100-140 kEuro is required.

The advantages of high resolution satellite imagery for map production are:

- Significant cost savings, as it produces large footprints, needs less control points and requires simple ortho-rectification algorithms.

Sensor technology will have high potential for 1:10,000 or even larger scale mapping

- Stereo-pair capabilities, extremely long camera length and suitable base-to-height ratio values, similar to the more conventional aerial photo acquisition systems.

Figure 1. Left: ortho-rectified 1:30,000 aerial photograph (1987); middle: extracted rectified IRS-1C P image (1997) of a 2 km² area located. Arrows indicate areas of small changes through time.
Various sensor alternatives will be available in the future, varying in spatial resolution and technological advancements. Satellite image acquisition is not restricted by bureaucratic procedures and it may be realised in any time frame and frequency at 1:15,000 and 1:20,000 mapping, respectively. Future sensor technology providing stereo-pair capabilities and higher resolutions (less than 1 metre) will have high potential for 1:10,000 or even larger scale mapping.

Feature Identification and Interpretation

Ortho-rectified 2-metre and 5-metre imagery offers high potential for feature identification and correct interpretation compared to commonly used high altitude aerial photography. Exactly the same potential as for aerial photography is reported when the classification concerns varying housing density, industrial zones, transport facilities, green and leisure areas and sport facilities. Single features such as individual houses, buildings or narrow street segments can be identified and interpreted with relatively high certainty (up to 90 per cent) when a 2-metre resolution imagery (KVR-1000) is used. Although the same features could be identified in the surroundings of Athens, between 1987 to 1997. These were mainly attributable to changes from open land green areas to residential zones and industrial activities. Images with one metre resolution or less will enable identification of changes at the level of the single house. Illegal changes may thus be identified.

Image Fusion

Image fusion enables joining of the spectral properties of the coarser resolution multi-spectral imagery with the pronounced texture information provided by the high resolution panchromatic images. The limiting factor for the current sensor technology is the large difference in pixel resolution between multi-spectral and panchromatic layers. Nevertheless, image fusion remains possible when the co-registration is performed very accurately. Coming sensors will help to overcome these difficulties because of their enhanced geometric properties and their capability to produce higher resolution multi-spectral images. Sensors like Quickbird1&2, Ikonos 1&2, and Orbview3, will offer multi-spectral products with pixel ground resolution of 4 metres.

Future

Much effort has still to be invested in the development of specialised tools, methods and models for better exploitation of the new satellite data, including:

- Tools for enhanced processing of stereo-pairs

Accuracy

In our tests we used IRS-IC P (5 m resolution) and KVR-1000 (2 m resolution). The test area involved the surroundings of the city of Athens in Hellas. Accuracy assessment was based on checkpoints taken from 1:5,000-scale topographic maps. The check point coordinates have been measured both on the ortho-photo map and on the ortho-rectified images from the same study area. The accuracy lies within the expected range for scale 1:10,000-mapping, when using 1:40,000-scale aerial photography, adequately ortho-rectified. The accuracy of the same points, identified in the ortho-rectified KVR-1000 and IRS-IC P scenes, lie within the expected range for the 5-metre resolution imagery to a percentage attaining only up to 50 per cent, the analyst may nevertheless gain an accurate impression of land use patterns. Land use recognition, delimitation and mapping may thus be rather easily performed on a single ortho-rectified image, instead of on a series of aerial photographs, which would be otherwise required.

Change Detection

Change detection is the process of identifying differences in the state of an object or land use by observing it at different times (Figure 1). It may be performed within urban zones by using appropriate combinations of satellite images from different time frames, or even combinations of satellite images with historic aerial photography. The study of these data sets provides meaningful information on urban environment dynamics. Experiments with KVR-1000 imagery and older aerial photography show that their geometric accuracy enables precise geo-referencing and co-registration to proceed with change detection. Seven cases of

One metre resolution will enable identification of changes at the level of the single house

The rectified KVR-1000 image (1992); north-eastern part of the city of Athens.
Better techniques for storage and retrieval of large image volumes
- Image analysis techniques which account for geometric and element structure properties on the image plane and eventually integrate human reasoning for feature recognition

Conclusions
The current and new generation of high resolution satellite imagery are appropriate for mapping land use patterns and their changes within urban areas. They are very well suited for visual interpretation of urban areas. This is because they provide almost the same level of information as aerial photographs and their inherent geometric properties permit the accurate location and delineation of features. We believe that this type of satellite imagery will become the main supporting tool for urban analysis studies in the future.

Further Reading

Biography of the Author
Haris Kontoes received a Ph.D. degree from the National Technical University of Athens in 1992. He is a researcher of the National Observatory of Athens working on the development of advanced image processing techniques for satellite image exploitation. He has served as project manager in the field of digital photogrammetry, cadastral, resource management and land use mapping by remote sensing.

National Observatory of Athens, Magement & Vas. Pavlou Str, Palaionterti, PO BOX 200 48, GR 152 36, Athens, Greece; E-mail: kontoes@creator.space.noa.gr

ATLAS Photogrammetric Software

ATLAS MAPPING
- TINs from Planimetry
- TINs from Existing DTM's
- Gridded DTM's from TIN
- On-line data verification
- Progressive sampling
- Contour Interpolation
- Volumes

ATLAS ORTHO
- Automatic Terrain Modeling
- Smooth real-time Pan
- Model to Model Panning
- Orientations from DSP
- Exterior Orientations
- Color 3D Superimposition
- AT Measurement & Adjustment

ATLAS TIN
- Orthos from TINs
- Mosaics
- Radiometric Correction
- True Orthophoto
- Vector Raster Overlay
- Heads-up Digitizing

ATLAS data collection
- BATCH off-line EDITING
- Translators
- Analog Orientations
- Seamless Map Data
- Continuous data - Integrity

Workstation Performance on a PC
& Windows NT

INTEGRATION SOLVED
E-Mail: sales@ktassoc.com
WEB: www.ktassoc.com

200 Corporate Place
Peabody, MA 01960
TEL: 978-536-9100
FAX: 978-536-9110