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Remote Sensing Techniques for 
Forest Fire Disaster Management: 
The FireHub Operational Platform
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Emmanuela Ieronymidi, and Iphigenia Keramitsoglou 

Introduction

Wild�res have always been present in Mediterranean ecosystems and thus 
constitute a major ecological and socioeconomic concern. During the last 
decades, both the number and average size of large �res have experienced an 
increasing trend, causing extensive economic and ecological losses and often 
human casualties (Dimitrakopoulos and Mitsopoulos 2005). Increased wild-
land �re activity over the last 30 years has had profound effects on the budgets 
and operational priorities of the forest services, civil protection agencies, �re 
brigades, and local entities with wildland �re management responsibilities 
(Giannakopoulos et al. 2009; Dimitrakopoulos et al. 2011; Koutsias et al. 2013). 
Signi�cant alterations in the �re regime have occurred in recent  decades, 
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158 Integrating Scale in Remote Sensing and GIS

primarily as a result of socioeconomic changes, increasing dramatically the 
catastrophic impact of wild�res. Despite the recent advances in �re�ghting 
tactics and means and the increased amount of resources allocated for �re 
suppression, the ef�ciency of the adopted strategy has been decreasing over 
the last four decades, with both number of �res and burnt area increasing 
(Bassi et al. 2008). 

In this context, the development of appropriate �re suppression strategies 
for wild�res is challenging. A careful reconsideration of the current wild�re 
management strategy is necessary in order to reduce the devastating impacts 
of wild�res on an ecosystem’s ecological integrity, society, and economic 
activity in the future. Fire managers are required to consider and balance 
threats to multiple socioeconomic and environmental resources and need 
to identify, in real time, the probability that a wild�re will affect valuable 
resources and disrupt activities, as well as to estimate the level of damage in 
ecosystems. The development of more effective wild�re management strate-
gies is a real necessity and requires the availability of accurate and spatially 
explicit data in order to support evidence-based decision-making. 

Earth observation (EO) technology can provide such evidence, through 
the systematic and standardized processing of satellite imagery. In this con-
text, a large number of EO images of different spectral and spatial resolu-
tions are exploited by the National Observatory of Athens (NOA) through 
BEYOND (Building a Centre of Excellence for EO-Based Monitoring of 
Natural Disasters; www.beyond-eocenter.eu), in order to derive thematic 
products that cover a wide spectrum of wild�re management applications. 
These products address the requirements of crises occurring before, during, 
and after �res and follow the Copernicus (GMES) Emergency Response and 
Emergency Support standards (http://emergency.copernicus.eu/). The NOA 
has developed a portfolio of similar products, including early �re detection, 
�re monitoring, and rapid �re mapping, as well as weekly, seasonal, and dia-
chronic burn scar mapping (BSM) and land use/land cover damage assess-
ments over the affected areas.

The concept is to rely on the effective integration of satellite imagery with 
auxiliary geospatial information and meteorological data, based on statisti-
cal and rule-based methods. Input satellite data are comprised of multispa-
tial, multitemporal, and multispectral remote sensing data from EUMETSAT, 
NASA, NOAA, and European Space Agency missions, and the incorporated 
processing chains are scalable via the exploitation of array database and 
semantic Web technologies (Koubarakis et al. 2012).

The FireHub real-time �re monitoring service is operated on a routine 
basis by the BEYOND Center of Excellence, which provides continuous 
information on active �res detected from EO satellites. The system ingests 
raw satellite images of coarse spatial resolution from the SEVIRI instru-
ment on board the Meteosat Second Generation (MSG) series of satellites, 
providing data every 5 minutes. In addition, medium resolution images 
captured by the moderate-resolution imaging spectroradiometer (MODIS) 
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159Remote Sensing Techniques for Forest Fire Disaster Management

onboard the Earth Observing System (EOS) Aqua and Terra satellites, the 
Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi 
National Polar-Orbiting Partnership (NPP) satellite, the advanced very 
high resolution radiometer (AVHRR) onboard the EUMETSAT MetOp, and 
NOAA Polar Operational series of satellites, with a revisiting capacity of a 
few hours a day, are automatically ingested into the system by the time of 
acquisition. Finally, the FireHub system design foresees that in the immedi-
ate future, high-resolution Sentinel-2 data will become available in real time 
through  the Hellenic  National Sentinel Data Mirror Site (http://sentinels.
space.noa.gr), which is part of the ESA’s Collaborative Ground Segment in 
Southeastern Europe. The work�ow integrates a number of geospatial layers 
and in situ data representative of the area’s fuel model, the topography, and 
the dynamic meteorological forecasts relevant to wind speed and wind 
direction. The system provides on a 5-minute basis, and with a time interval 
of less than 6 seconds after the satellite image acquisition, a �ne-grained clas-
si�cation of �re occurrence in subpixels of 500 × 500 m wide, thus improving 
the initial MSG/SEVIRI raw observation by about 50 times.

In addition to early �re detection and monitoring, the identi�cation and 
recording of the burnt areas is routinely achieved through the implementa-
tion of a remote sensing method explicitly developed at the NOA for BSM 
(the BSM-NOA method). The applied BSM-NOA method (Kontoes et al. 2009) 
was developed and deployed in the framework of the Copernicus (GMES) 
European �agship program. It aims to contribute to a standardized and 
homogeneous mapping of burnt areas and related vegetation damage in the 
European Union member states. The system ensures timely production of 
burnt area maps, from 1 day (for speci�c �res that need rush-mode mapping) 
to a few days (for emergency support), or up to 2 months after the end of the 
�re season to cover the national scale demands with high thematic and spa-
tial accuracy. This activity supports the reporting and planning needs of the 
operational users nationwide.

Today, after several development phases, it is delivered through the BEYOND 
Center of Excellence to the wide institutional user  community—ministries of 
environment, forestry services, and civil protection  authorities—and it has 
been approved as a robust and accurate method. The method has a high spa-
tial precision (0.5–1 ha), at desirable mapping scales ranging from 1:10,000 to 
1:50,000. Speci�cally for Greece, the service is provided via a Web GIS applica-
tion. It serves a yearly updated geodatabase that contains the results of the 
diachronic burnt area mapping over the country since 1984. Its production was 
based on analysis of the full USGS archive of Landsat Thematic Mapper (TM) 
images, since the �rst satellite image was ever recorded over Greece. 

This chapter describes the theoretical background, architecture, and 
performance characteristics of these two fully automated Web GIS–based 
systems (�re monitoring and �re mapping) that are designed to assist 
land managers in wild�re suppression planning and in post�re damage 
assessment. They consist of the two basic modules of the so-called FireHub 
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Platform (http://ocean.space.noa.gr/FireHub), which was awarded �rst 
prize for Best Challenge Service in the Copernicus Masters Awards 
Competition 2014.

Theoretical Background

Real-Time Fire Monitoring

Real-time �re activity has shown great potential to be detected from polar 
orbiters (Giglio et  al. 2003) and geostationary satellites (Calle et  al. 2006). 
Polar orbiters are capable of providing data at moderate to high resolution, 
whereas data from geostationary satellites have proven to be useful for the 
detection of �re activity at continental and global scales and offer broad 
direct broadcast capabilities. Polar orbiters provide only four observations 
per day of approximately 1 km spatial resolution at nadir. High variance of 
the detectable hotspots and temporal sampling issues related to the diurnal 
�re cycle have been reported. In contrast, geostationary satellites offer great 
advantages in �lling in the gaps in spatial coverage worldwide at high tem-
poral rates (5–15 minutes), although with a much coarser spatial resolution 
(approximately 4–5 km) (Prins and Menzel 1996). 

In the literature we found EO-based �re-detection studies that were mainly 
based on the use of radiometers, such as the AVHRR—a space-borne sensor 
onboard the NOAA family of polar-orbiting platforms that measures the 
re�ectance of the Earth in �ve relatively wide spectral bands (Chuvieco and 
Martin 1994). Another well-documented and tested sensor, widely used in 
active �re detection, is MODIS, which is equipped on the EOS and operates 
on both the Terra and Aqua spacecrafts (Kaufman et al. 1998). Several oper-
ational systems have been developed worldwide using the two abovemen-
tioned sensors for active �re-detection purposes. The Global Fire Information 
Management System delivers MODIS hotspot/�re location information to 
natural resource managers and other stakeholders around the world (Justice 
et al. 2002). In Europe, the European Forest Fire Information System (EFFIS) 
maps active hotspots using MODIS and provides a synoptic view of current 
�res in Europe as a means to assist the subsequent mapping of burnt area 
perimeters. Information on active �res is nominally updated on a daily basis 
and, when needed, made available in EFFIS within 2–3 hours of the MODIS 
image acquisition (San-Miguel-Ayanz et al. 2005). 

Regional operational active �re-detection systems also exist. The German 
Remote Sensing Data Center of the German Aerospace Center offers an opera-
tional service on �re detection from space. Based on data obtained from the 
experimental satellite BIRD and from MODIS, wild�res are detected and 
mapped (Brieb et al. 1996). In Canada, the Canadian Fire Monitoring, Mapping, 
and Modelling System uses infrared imagery from NOAA/AVHRR for the 
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161Remote Sensing Techniques for Forest Fire Disaster Management

daily monitoring of active �res and smoke across the country. This  informa-
tion is further used to derive estimations of �re impact and fuel consumption 
at a national scale (Li et al. 2000). In Australia, the FireWatch Map Service pro-
vides emergency services personnel with an online mapping application to 
help in �re management over the continent. The data sets include �re hotspots 
from MODIS and NOAA imagery (Steber et  al. 2012). The Remote Sensing 
Laboratory of the University of Valladolid in Spain provides public operational 
information on �res detected from geostationary MSG/SEVIRI in some coun-
tries of Western Europe and North Africa, with 15-minute information updates 
and disseminates the results over the Internet (Pennypacker et al. 2013).

Despite its coarse spatial resolution, several studies have demonstrated 
the capabilities of the SEVIRI instrument for the detection of �res with a 
size much smaller than the resolution cell. Two of SEVIRI’s spectral bands 
are operative in the shortwave infrared (SWIR) (3.9 μm) and thermal infrared 
(10.8 μm) wavelengths, and they are sensitive to �re and to Earth’s surface 
radiative temperature. Laneve et al. (2006) reported that MSG/SEVIRI can be 
used to detect �res up to a relatively small size (0.1 ha) with a synoptic view 
of their distribution on a large scale, thus allowing for a more ef�cient and 
operational �re-suppression component. In the same context, Van den Bergh 
and Frost (2005) employed multitemporal approaches to detect �res based 
on the high update rate of MSG/SEVIRI, while Umamaheshwaran et  al. 
(2007) investigated the potential application of an image mining method for 
monitoring and analyzing �re behavior in high-resolution scale in order to 
improve the information extracted from MSG/SEVIRI. 

The potential of MSG/SEVIRI was in fact promptly explored, namely 
within the scope of characterizing the spatiotemporal distribution of wild-
�re activity on the African continent (Amraoui et al. 2010), as well as estimat-
ing the amounts of released �re intensity and fuel consumption (Roberts 
and Wooster 2008). In Europe, MSG/SEVIRI images were incorporated in 
processing work�ow in order to develop a real-time detection system for 
Greek territory (Sifakis et al. 2011). MSG imagery has shown good results 
when used for generating �re risk maps based on �re weather indexes for 
the Mediterranean basin (Amraoui et al. 2013). 

Burn Scar Mapping

Several studies have shown that remotely sensed imagery acquired in vari-
ous spatial, spectral, and temporal resolutions is an effective means to delin-
eate the burnt areas and to determine the species affected and the degree of 
damage caused (Sifakis et  al. 2004; Quintano et  al. 2006). Burn scars can be 
clearly identi�ed on a variety of satellite image acquisitions like those from 
NOAA/AVHRR, Landsat TM and Enhanced TM+ (ETM+), MODIS, the 
medium- resolution imaging spectrometer Satellite Pour l’Observation de la 
Terre, and Indian Remote Sensing satellites (e.g., Fung and Jim 1998; Koutsias 
2000; Koutsias and Karteris 2000; Rogan and Yool 2001; Chuvieco et al. 2002; 
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162 Integrating Scale in Remote Sensing and GIS

Fraser and Li 2002; Pu and Gong 2004; Gong et al. 2006). In practice, satellite-
based BSM takes advantage of the distinctive spectral response of burnt vegeta-
tion. While healthy, living vegetation re�ects near-infrared (NIR) radiation and 
absorbs red light in the visible (VIS) part of the spectrum, burnt areas re�ect 
comparatively more radiation in the VIS and SWIR parts of the spectrum and 
absorb radiation in the NIR. This is attributed to the destruction of the plant 
and leaf structure (Rogan and Yool 2001). Subsequently, elimination of healthy 
green vegetation and the inevitable presence of charcoal or bare soil in the �re 
zone result in a change of radiation recorded by satellite sensors in the relevant 
spectral bands. These spectral discrepancies between pre- and post�re image 
acquisitions allow for a clear identi�cation of the burnt area boundaries. 

For automatic �re mapping, different methods are employed. The choice 
is largely dependent on the types of satellite data (spectral and spatial reso-
lutions), the area landscape characteristics (mixed land cover classes, frag-
mented landscape, and mixed forests with agriculture), and the size of the 
study area (region, country, and continent). These methods may include 
�xed thresholding algorithms, adaptive thresholding contextual algorithms 
(Li et al. 2001), or an integration of the two (Gong et al. 2006) applied to image 
spectral bands and/or computed indices derived from uni- or multitempo-
ral image acquisitions. Apart from data thresholding techniques, there exist 
diverse methods, employing logistic regression, exploiting image-derived 
indices (e.g., vegetation indices) coupled with geographic data (Koutsias 
2000), approaches using linear and/or nonlinear spectral mixture analysis 
techniques (Sa et al. 2003; Ustin 2004), rule-based tree classi�cation (Simard 
et al. 2000), and neural  network (Pu and Gong 2004) methods.

Extraction of burnt land information from remotely sensed data can be 
performed by using either uni- or multitemporal image acquisitions. Three 
different approaches have been reported including the following: (1) applica-
tion of multiple tests on spectral values and indices derived from unitemporal 
data;  (2) multitemporal change analysis of spectral and biophysical indices; 
and (3) image segmentation and classi�cation techniques using uni- or mul-
titemporal data (Arino et al. 1999). In the �rst approach, the identi�cation of 
burnt areas is performed by analyzing the spectral differences of image bands 
and image-derived indices (e.g., Normalized Burn Ratio Index; Key and 
Benson 2003) using a single post�re image (Pereira 1999). In certain projects, 
this approach is preferred to a multitemporal one, as it makes the analysis 
straightforward. In the second approach, the temporal changes of spectral 
and/or biophysical parameters due to �res are detected using two images, 
pre- and post�re (Martin and Chuvieco 1995; Miller and Yool 2002; Fisher et al. 
2003). Analyzing the post�re decrease of vegetation vigor (e.g., multitemporal 
change analysis of vegetation indices), the changes depicted in multitemporal 
principal component analysis (PCA) vectors (Fisher et al. 2003), or even the 
changes of brightness, greenness, and wetness components introduced by the 
so-called tasseled cap Kauth–Thomas transform (Collins and Woodcock 1996), 
the  burnt areas can be identi�ed and mapped more effectively than using 
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163Remote Sensing Techniques for Forest Fire Disaster Management

a single image. In addition, this approach minimizes the spectral confusion 
of burnt areas with other land cover types such as permanent crops, open 
agricultural �elds, shadows, and urban and water surfaces. The third method 
involves conventional image classi�cation and postclassi�cation of uni- or 
multitemporal satellite data and image-derived indices.

NOA’s FireHub Real-Time Forest Fire 
Detection and Monitoring Service

The System Architecture

The real-time �re monitoring platform delivers an integrated fully auto-
matic processing chain. This module is part of the FireHub service of the 
BEYOND Center of Excellence. It is divided into dedicated subsystems that 
offer stakeholders online access to robust, accurate, and fully operational 
Web-accessible products to assist in �re management and decision-making. 
The system is enhanced via the integration of innovative information tech-
nologies for the effective storage and management of the large amount of EO 
and GIS data, the postprocessing re�nement of �re products using semantics 
(Kyzirakos et al. 2014), and the timely creation of �re extent and damage 
assessment thematic maps (Figures 6.1 and 6.3).

The architecture of this fully automated forest �re–monitoring application 
consists of the following parts:

 1. Satellite Ground Segment facilities (Block 1 of Figure 6.1) comprise 
the following:

 a. The high-throughput MSG/SEVIRI ground-based receiving antenna 
(DVB-S2), which collects all spectral bands from any available 
Meteosat satellite every 5 or 15 minutes, depending on the satellite 
platform. 

 b. The X-/L-band receiving antenna, which provides real-time acquisi-
tions from NASA, NOAA, and third-party satellite missions such 
as the Earth Observing System (EOS), NPP, JPSS, NOAA/AVHRR, 
MetOp, and FengYun systems.

 c. The ESA’s Sentinel Collaborative Ground Segment (mirror site) infra-
structure: The so-called mirror site of the NOA provides real-
time acquisitions of the ESA Sentinel 1, 2, and future 3 and 5P 
missions, covering the geographic area of Southeastern Europe, 
the Balkans, North Africa, and the Middle East. The mirror site 
has been designed to connect with the backbone of the GEANT 
 network (http://www.geant.net/) for fast access to the image 
data from ESA’s core ground segment.
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164 Integrating Scale in Remote Sensing and GIS

 2. The raw image data sets that are decoded and temporarily stored 
in the data vault. This system is responsible for the ingestion policy 
and enables the ef�cient access to large archives of image data and 
metadata in a fully transparent way, regardless of their format, size, 
and location (Block 2 of Figure 6.1).

 3. The back end of the system (Figure 6.3). The back end relies on array 
image processing solutions such as MonetDB (https://www. monetdb.
org/) for two tasks: (1) the implementation of the �re hotspot  detection 
processing chain (using the SciQL scienti�c query language, https://
en.wikipedia.org/wiki/MonetDB#SciQL) and (2) the evaluation of 
semantic queries for improving the accuracy of the products and rap-
idly generating thematic maps (using the semantic spatiotemporal 
Resource Description Framework [http://www.w3.org/RDF] store 
Strabon [http://www.strabon.di.uoa.gr/]) (Block 3 of Figure 6.1).

 4. A geospatial ontology that links the generated hotspot products (prob-
able active �re pixels) with stationary GIS data (Corine Land Cover, 
Coastline, Administrative Geography) and open geospatial data avail-
able on the Web (e.g., LinkedGeoData—http://linkedgeodata.org/, 
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FIGURE 6.1
Architecture of the real-time forest �re detection and monitoring module of the FireHub tool.
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GeoNames—http://www.geonames.org/). This ontology is expressed 
in Web Ontology Language (Block 4 of Figure  6.1 and Block  2 of 
Figure 6.3).

 5. The spatial resolution re�nement process, which employs a complex 
model for the improvement of the spatial accuracy of the satellite-
based observations by approximately 50 times, thus downscaling 
the hotspot spatial resolution from cells of 3.5 × 3.5 km to cells of 
500 × 500 m. The algorithms behind this process are currently being 
evaluated for awarding a patent (Block 3 of Figure 6.3). 

 6. The submodule for the ingestion of meteorological model forecasts. 
It consists of a 52-hour wind speed and wind direction prediction, 
with a 4-km spatial resolution at a �xed grid and a temporal resolu-
tion of 1 hour (Block 4 of Figure 6.3). 

 7. The sun module that feeds large-scale and high-speci�city fuel infor-
mation, as depicted in Figure 6.2. This map was derived through the 
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FIGURE 6.2
Fuel map of Greece, generated from the update and fusion of detailed governmental land use 
databases with the Corine Land Cover data.
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fusion of the major vegetation classes represented in existing land 
use databases with the Corine Land Cover 2000 database. The fuel-
type generation was based on a reclassi�cation procedure and 
conversion of the vegetation types into custom fuel models repre-
sentative for Greek ecosystems (Block 5 of Figure 6.3).

 8. The module that processes the 30 × 30 m ASTER Global Digital 
Elevation Map tiles for deriving the slope and aspect information 
parameters in each 500 × 500 m cell (Block 5 of Figure 6.3). 

 9. The �re behavior modelling submodule, which automatically 
invokes in speci�c time frames the FlamMap (Finney 2006) �re 
model (Block 6 of Figure 6.3); the output of the model (Block 7 of 
Figure 6.3) is combined with the real-time satellite observations for 
deriving re�ned �re occurrence assessments (Block 8 of Figure 6.3). 

 10. The front-end interface, for controlling the back-end functionality 
with user-friendly tools, controlling the appearance of the informa-
tion layers in the monitor, and disseminating the products to the 
end-user community through the Web (Block 5 of Figure 6.1). 

The graphical user interface provides several functionalities for serving the 
hotspot and the smoke dispersion forecasts via the Web GIS interface. These 
are as follows: (1) the systematic provision every 5 minutes of the �re extent; 
(2) the retrieval and display of past �re events; and (3) the systematic provi-
sion on an hourly basis of smoke plume dispersion in 2D and 3D. Active �res 
are displayed in (1) re�ned mode (500 × 500 m wide cells) and (2) raw mode 
(~3.5 × 3.5 km wide cells). Three background map layers can be selected as 
background maps: (1) the LSO/VLSO Orthophotos of Ktimatologio S.A. 
(http://www.k timatologio.gr), which is a detailed raster basemap with a 
spatial resolution of 1 m; (2) Google Earth tiles; and (3) the CORINE Land 
Cover (2000).

Methodology and System Operations

The following operations are invoked on a routine basis every 5 minutes, as 
soon as a new MSG/SEVIRI satellite image is ingested into the system from 
the receiving station. It should be acknowledged that the different process-
ing steps, the description of which follows, have been developed and vali-
dated in the frameworks of the TELEIOS ICT (http://www.earth observatory.
eu/) and BEYOND EC projects (http://beyond-eocenter.eu/). For more 
detailed information, a rich compilation of related publications stemming 
from research work in the framework of these projects is available to the 
reader through the projects’ websites.

Figure 6.3 shows the general methodology used for the incorporation of 
the minimum travel time (MTT) algorithm in NOA’s FireHub real-time �re 
detection and monitoring system.
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First, each pixel of a new satellite acquisition is classi�ed either as �re, 
potential �re, or non�re. However, the inherent coarse resolution of the MSG/
SEVIRI instrument results in false alarms and omission errors, which re�ect 
on the product’s accuracy. The accuracy of the algorithm is enhanced by 
combining the �rst classi�cation outcome with external information from 
linked geospatial data. 

For example, a typical shortcoming of the original classi�cation is false 
alarms at locations with inconsistent land use, such as urban or agricultural 
areas. This problem is overcome by using a data set that describes the Greek 
ecosystems in terms of land use/land cover classes and removing those early 
detected hotspots in nonvegetated areas. The hotspot product, generated 
every 5 minutes, is subsequently passed through a series of re�nement steps 
to increase its accuracy and robustness by respecting several spatiotemporal 
�re behavior rules. Indicatively, the temporal persistence of a �re pixel over a 
period of, say, half an hour increases the con�dence level (CL) that it is correctly 
classi�ed as �re. Therefore, these operations primarily focus on updating the 
CL of each hotspot pixel and thus moving from the three-�ag approach (�re, 
potential �re, and non�re) to a real CL value. In addition, the re�ned hotspot 
is annotated with the region name it belongs to as attribute information.

Finally, the requirement to generate added-value thematic maps is 
addressed at this processing level. The Linked Open Data Cloud supplies 
an abundance of data sets, ranging from �ne-grained geometric objects like 
�re stations to coarser ones like countries. Therefore, instead of manually 
combining heterogeneous data, the user can design a semantic query to 
integrate and overlay information layers, generate maps, and export data in 
well-established formats (Kyzirakos et al. 2012). Although this service was 
designed for Greece, it can be applied to any geographic area due to the open 
technologies adopted. 

The next step is particularly important because it improves the spatial res-
olution of �re detection. At this processing phase, each MSG/SEVIRI pixel 
corresponding to a �re or potential �re event is divided into a 7 × 7 grid, that 
is, to subpixels of 500 × 500 m. For each of these 500-m wide cells, a new CL 
for �re occurrence is calculated with the use of speci�c �re hazard weight 
factors. Such factors take into account the probability of �re occurrence and 
ease of �re propagation, for example, topography and vegetation character-
istics. The new CL is the product of the raw CL (CLraw), with the weight fac-
tors derived from the fuel type (WFT), elevation (WE), slope (WS), aspect (WA), 
and fuel cover (WFD) weights. The normalization of the weight factors and 
therefore their contribution to the calculation of follows the suggestions of 
Kontoes et al. (2013a).

 CL = CLraw × WE × WS × WA × WFT × WFD (6.1)

Moreover, the MTT algorithm (Finey 2002) is used for modeling the 
�re  propagation in each event, as embedded in the FlamMap �re behavior 
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169Remote Sensing Techniques for Forest Fire Disaster Management

software. FlamMap calculates the �re size and shape from an ignition point. 
The output of the model is compared in terms of its spatial distribution and 
temporal  evolution to the �re event’s pixel observations with the MSG/SEVIRI 
image. From this point on, a complex modeling scheme is implemented that 
fuses the information from the �re pixel classi�cation CL and the �re propa-
gation model output to derive the re�ned �re occurrence  evidences in each 
500 × 500 m subpixel. 

A typical example of a �re evolution event in 2013, on the island of Rhodes, 
Greece, is presented in Figure 6.4. The products generated at the  various 
 processing levels of the FireHub system are shown. The �rst row  in Figure 6.4 
shows the downscaled hotspots after the �rst satellite imagery classi�ca-
tion (CL), the second row corresponds to the integration of the FlamMap 
 dispersion model results, and the last row is the �nal result delivered to the 
end-user community, which is the outcome of the combination of the satellite 
observation after integrating the simulated �re  dispersion forecast product.

NOA’s FireHub BSM and Damage Assessment Service

This is a fully automatic single or multidate processing chain that takes as 
input multispectral satellite images of any spatial resolution and produces 
 precise burnt area polygons and wildland area damage assessments over 

+30 min +90 min +150 min

Real-time fire
monitoring service

A

B

C

FlamMap
fire behavior

mapping and analysis
software

Enhanced real-time
fire monitoring service

Timeline

FIGURE 6.4
A typical �re evolution example at the different processing levels of FireHub.
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Greek  territory  (Kontoes et  al. 2013a). The service follows the Copernicus 
(GMES) accuracy and validation standards and it has been  successfully 
 evaluated over different territories in Southeastern Europe. As such, it has 
been quali�ed and is transferable to any place over Europe at the regional, 
national, and continental levels. The burn scar mapping (BSM-NOA) service 
was  initially developed in the framework of the ESA GMES Service Element 
program called Risk-EOS, the so-called BSM-NOA service (Kontoes et  al. 
2009), and has been �ne tuned to become a fully operational processing chain. 

The BSM-NOA service is activated on a user-demand basis, and the burnt 
area products are delivered to end users either in rush mode for emergency 
response purposes or in nonrush mode within a few days after the suppres-
sion of the �re event for emergency support purposes, and also immediately 
after the end of the �re season to meet recovery needs for the entire region/
country. Depending on the input satellite data, the service provides BSMs 
at high spatial resolution (20–30 m pixel size, minimum detected �re size 
of 1 ha) and very high spatial resolution (2–8 m pixel size, spatial accuracy 
of 4–10 m, detected �re size of 0.5 ha), as well as damage assessments at the 
landscape level. 

Based on the BSM-NOA core processing algorithm, a multitemporal 
analysis is feasible to estimate the annual burnt areas spanning several 
years. Such an analysis provides a diachronic mapping product that can 
be exploited for further statistical analyses, �re behavior cyclic patterns, 
climate change studies, and so on. For the production of the diachronic 
BSM of Greece, the entire USGS Landsat TM imagery archive over Greece 
since 1984 was used—that is, the �rst year when Greece was captured by 
the Landsat TM sensor. Figure 6.5 depicts the main steps of the BSM-NOA 
production chain.

The processing chain is divided into three stages, each one containing a 
series of modules:

 1. The preprocessing stage:
 a. Identifying appropriate satellite data (spatial/spectral resolution, 

coverage, and acquisition dates), downloading, and archiving 
(Block 1a of Figure 6.5).

 b. Radiometric normalization, registration, and georeferencing: A fully 
automatic procedure wherein the input raw satellite images 
are calibrated, pixel values are converted from digital counts 
to radiometric values, and automatic image orthorecti�cation 
is performed (Gao et al. 2009) (Block 1b of Figure 6.5).

 c. Cloud/water masking: The generation of a mask to exclude from 
subsequent processing pixels “contaminated” by clouds, as well 
as pixels representing water areas. This is done using NASA’s 
LEDAPS algorithm (http://ledaps.nascom.nasa.gov) (Block 1c of 
Figure 6.5). 
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171Remote Sensing Techniques for Forest Fire Disaster Management

 2. The core processing stage:
  The focus on the core processing phase is the burnt area classi�cation 

algorithm (Block 2a of Figure 6.5). The algorithm aims at identifying 
burnt and nonburnt sets of pixels within the georeferenced satellite 
image. Each image pixel is basically a vector of intensities that cor-
respond to emissions from different frequency channels. Using the 
Landsat 5 TM as an example, a raw image consists of seven spec-
tral bands. Classi�cation to burnt and nonburnt areas relies on the 
fact that the emissions from different frequency bands have a physi-
cal interpretation. Simple band algebra can lead to the derivation 
of physical indexes. The main criteria used within the BSM-NOA 
process to correctly classify pixels are as follows: (1) the Normalised 
Burn Ratio (NBR) Index, (2) the Albedo Index, (3) the Normalized 
Difference Vegetation Index (NDVI), and (4) the NDVIMULTI, which 
is the difference of the two NDVIs calculated before and after a 
�re event over the same area. Then, a decision tree is formed where 
the adopted indexes are compared to site-speci�c thresholds. These 
image indexes are as follows:

 a. The NBR: It is one of the most widely used image enhance-
ments for mapping wild�res worldwide. Key and Benson (2003) 

Input data
a b c

c b a

dcba

3

2

1

High and very high
spatial resolution

Post–noise
removal

Knowledge/rule-
based automatic

approach

Attributes
enrichment

Automatic
thematic

refinement
Use of auxiliary

GIS layers

Map
production

and delivery to
end users

Preprocessing

Core processing

Postprocessing

Georeferencing
High and very high
spatial resolution

Classification
Pixel grouping and 

clustering
Raster to vector

conversion
NBR, ALBEDO, near-

infrared, and NDVI
difference indexes are

used

Cloud masking

FIGURE 6.5
The FireHub BSM-NOA service chain.
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172 Integrating Scale in Remote Sensing and GIS

introduced this index as a variation of the NDVI. They replaced 
the red re�ectance value in the NDVI with the mid-infrared 
re�ectance value:

 )(=
−
+

R R
R R

NBR NIR MIR

NIR MIR

 (6.2)

  with RNIR and RMIR denoting the re�ectance values recorded in 
the NIR and mid-infrared channels of the satellite image (Bands 
4 and 7 of Landsat TM), respectively. 

Several researchers have proposed this index for burnt area 
mapping (Cocke et al. 2005; Roy et al. 2006), as re�ectance values 
in the red and mid-infrared ranges exhibit the greatest re�ectance 
change in response to a �re. Although NBR has been effective 
in many burnt areas mapping studies, it has not been widely 
tested for Greek ecosystems. In the south Mediterranean zones 
and especially within the Greek pine and shrubland ecosystems, 
land abandonment has resulted in intense fuel accumulation. 
Because of this, a signi�cant reduction in green vegetation is 
reported inside the burnt areas after a �re occurrence. In these 
areas, the NBR index can differentiate accurately between burnt 
and unburnt areas. Forest ecosystems, however, are much diver-
si�ed in Greece and forest canopy density decreases from north 
to south. Therefore, the forest stands become less uniform and 
are interrupted by the presence of agricultural �elds, dispersed 
settlements, roads, open �elds, abandoned farms, or permanent 
crop cover. This high mixture of classes makes automatic image 
segmentation with the sole use of NBR problematic. Indeed, 
because the burnt vegetation is characterized by an increase in 
re�ectance in the VIS, a decrease in the NIR, and a slight increase 
in the mid-infrared, the spectral response of burnt forests tends 
to be “�atter” than that of healthy vegetation, which may cause 
confusion with nonvegetation classes like open agricultural 
�elds, bare soils, water surfaces, urban areas, or permanent 
crops. This type of confusion between charcoal and other soil col-
ors in highly fragmented ecosystems was also reported by Rogan 
and Yool (2001), who suggested the use of the Kauth–Thomas 
tasselled cap transformation (Kauth and Thomas 1976) to resolve 
the reported confusion. In order to cope with this problem, the 
BSM-NOA approach integrates two additional spectral indices 
complementary to NBR.

 b. The uni- or multitemporal NDVI (NDVI and NDVIMULTI): The NDVI 
is a common spectral vegetation index derived by dividing the 
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173Remote Sensing Techniques for Forest Fire Disaster Management

difference between re�ectance in the NIR and the VIS red chan-
nels by the sum of the two (Rouse et al. 1974):

 NDVI NIR RED

NIR RED

R R
R R

( )=
−
+

  (6.3)

  with RNIR and RRED denoting the re�ectance values recorded in 
the NIR and red channels of the multispectral satellite image, 
respectively.

  NDVI has long been used in the Mediterranean for assessing the 
vegetative health and moisture content of an area and resolving 
ambiguities in the discrimination between healthy and dead 
or removed vegetation (Marsh et al. 1992; Tappan et al. 1992; 
Lyon et al. 1998). Moreover, NDVI has been used to demonstrate 
the extent of vegetation removal associated with a �re event, as 
it exhibits a sharp post�re drop (Li et al. 2000; Diaz-Delgado and 
Pons 2001; Vafeides and Drake 2005). Depending on the number 
of acquisitions, the NDVI analysis can be unitemporal (calcu-
lated only at the post�re level) or multitemporal. The multitem-
poral difference of NDVI adopted in BSM-NOA is denoted as 
NDVIMULTI and is calculated using the following equation:

 NDVIMULTI = NDVIPREFIRE – NDVIPOSTFIRE (6.4)

  with NDVIPREFIRE and NDVIPOSTFIRE denoting the NDVI values 
calculated before and after a �re occurrence over the affected 
area, respectively.

The multitemporal NDVI approach is preferred to a unitem-
poral one, as it better resolves the confusion between classes. 
Several studies have differenced pre�re and post�re NDVI 
images to discern �re scars fast and ef�ciently (Cahoon et  al. 
1992; Kasischke et al. 1993; Kasischke and French 1995; Li et al. 
1997; Leblon et al. 2001). 

 c. The albedo index: In highly diversi�ed Mediterranean ecosystems, 
the NDVI might put limitations on the detection and delinea-
tion of burnt from unburnt surfaces. Pereira (1999) and Elmore 
et al. (2000) concluded that the NDVI is affected by soil color and 
is therefore not always comparable across a heterogeneous area. 
Due to this issue, BSM-NOA integrates the empirical approxi-
mation of the surface albedo (Saunders 1990; Lasaponara 2006), 
which is an indicator of the surface brightness. The albedo index 
is calculated using the following equation:

 = +R R
ALBEDO

2
NIR RED  (6.5)
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174 Integrating Scale in Remote Sensing and GIS

  with RNIR and RRED denoting the re�ectance values recorded in 
the NIR and red channels of the multispectral satellite image, 
respectively.

From the above, it is shown that none of the proposed image 
indexes by themselves can be considered suf�cient to  ef�ciently 
resolve the problem of burnt area mapping in south Mediterranean 
ecosystems. Hence, the BSM-NOA approach suggests the appropri-
ate thresholding and combined use of the three image indexes, with 
appropriate classi�cation re�nement (noise removal) processes, 
which is performed at the postprocessing level (Kontoes et al. 2009).

Upon deciding on the burnt and nonburnt pixels of the 
image, the neighboring pixels are grouped together (Block 2b of 
Figure  6.5) since they constitute the same �re event, and then 
the raster is converted to vector (ESRI polygons) (Block 2c of 
Figure 6.5) to proceed to the postprocessing phase (Figure 6.5).

 3. The postprocessing stage:
 a. Noise removal, the process necessary to eliminate isolated pix-

els that have been wrongfully classi�ed as burnt. The minimum 
mapping unit depends on the spatial resolution of the input sat-
ellite data and ranges from 0.5 to 1 ha. Hence, a rectangle group 
of pixels with an edge of three or fewer pixels (for the case of 
Landsat TM with 30-m spatial resolution) should not be classi�ed 
as burnt. This �ltering is performed with the appropriate spatial 
functions using the Geospatial Data Abstraction Library via the 
Python programming language API (Application Programming 
Interface) (Block 3a of Figure 6.5). 

 b. In addition, a set of logical classi�cation rules is applied, using 
evidence from a series of auxiliary GIS layers, to ensure prod-
uct thematic accuracy and consistency with the underlying land 
use/land cover conditions and landscape morphology. The basic 
operations performed are (1) re�nement of the polygons to com-
ply with certain restrictions, similar to those applicable for the �re 
monitoring scenario (burnt areas in the sea, or inconsistent under-
lying land cover types) and (2) normal GIS processes such as clas-
si�cation polygon aggregation and polygon boundary smoothing. 
The �nal re�nement stage relies on the employment of visual 
checks to resolve any remaining classi�cation inconsistencies and 
uncertainties. The aforementioned approach was developed to 
minimize any manual (visual interpretations) operations that are 
laborious and time consuming (Block 3b of Figure 6.5).

 c. Attribute enrichment of the BSM product by overlaying the 
polygons with geoinformation layers (e.g., Greek Administrative 
Geography, CLC, open data, etc.) (Block 3c of Figure 6.5).
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175Remote Sensing Techniques for Forest Fire Disaster Management

 d. Generation of thematic maps that include damage assessments, 
that is, the land cover types and quantities of burnt areas per 
prefecture, at a national level (Block 3d of Figure 6.5).

Figure 6.6 provides a more detailed view of the main algorithmic step of 
the BSM-NOA approach, based on multidate (pre�re and post�re) image 
acquisition to generate burnt scar maps in vector and raster format.

The BSM product is ideal for use in further environmental time series 
analyses, production of statistical indexes (frequency of �re occurrence, geo-
graphical distribution, and number of �res over the studied territory) and 
applications, including change detection and climate change models, urban 
planning, and correlation with manmade activities. The BSM-NOA service 
is freely provided through the FireHub platform, allowing end users to 
search, view and retrieve (1) the annual BSM records at a fully detailed scale, 
(2) a single map layer depicting the areas affected for the last 30 years, (3) the 
number of times a certain area has been affected by �res, and (4) information 
and statistics on the impact of forest �res on the natural and built environ-
ment at the prefecture, regional, and country levels. 

Figure 6.7 shows cases of BSMs and damage assessments derived for 
selected wild�res in Greece during recent years.

Database of Orthorectified
Landsat images

Core-Processing
Classification and Filtering

NASA LEDAPS
ALGORITHM

Land/Water/Cloud Mask
NASA AROP ALGORITHM

Image Orthorectification

3 2

6

7

5
4

1

Individual Landsat
Frames

Land/Water/
Clouds Mask

Raw Core-Processing Output
Based on the analysis of

spectral indices

Product Validation and acceptance

Refined Annual Product
BSM Time-Series Analysis

Database 1984–Present

BSM Web
Application

Rule based postprocessing and product
refinement based on criteria:
(1) NDVI difference level according to
      Vegetation type
(2) Minimum acceptable size of burnt scar
(3) Spatial coincidence of single and two
      date process results

CORINE Land
Cover 2000

Advanced Retrieval of
Metadata Based Queries to
select the best images from
Landsat Historical Archives

Landsat 4, 5, 7 and 8
Ingestion

Input Dataset
Preparation
Mask Computation

Postprocessing

Rapid Interpretation and inspection
of Final Product
Building Polygon Topology
Export to Geo-spatial DBMS

Noise Reduction
BSM RefinementMask Vectorization

FIGURE 6.6
BSM-NOA algorithmic work�ow.
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Evaluation of Fire Products and Services 

Real-Time Fire Monitoring Service

During the summer of 2013, active �re occurrence data were collected in order 
to validate the �re detection process. The data attributes taken under consider-
ation were as follows: (1) �re locations (at the commune level), (2) ignition time 
(�rst alarm), (3) time of �rst intervention by the �re brigade, (4) burnt area type 
(forest and nonforest), and (5) burnt area in hectares per area type. These data 
were found in reports provided by the Hellenic Fire Brigade on a daily basis. 
The information regarding the area burnt and the burnt area type were ad hoc 
estimations provided by �re�ghters, submitted during or after suppression 
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FIGURE 6.7
Selected cases of BSM-NOA mapping and damage assessments over Greece.
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of the active �re event. For cross-validation purposes,  additional information 
from the local media was taken under consideration. The evaluation process 
entailed the matching of active �re events recorded in the reports with the 
data returned by the hotspot detection algorithm delivered every 5 minutes. 

The approach focuses on evaluating the �re detection accuracy of the algo-
rithm as a percentage of the events obtained from the �re brigade that were also 
successfully detected by the algorithm. Additionally, the capability of the algo-
rithm to provide early warnings about �re events was investigated, by compar-
ing the ignition time provided by the algorithm with the ignition time provided 
by the �re brigade. To estimate the algorithm’s performance concerning the 
�re’s location in real time, the active hotspots returned by the algorithm within 
the 500 × 500 m wide cells were compared with the BSM polygons, the latter 
referring to the entire �re season over Greek territory. The BSM polygons used 
as reference were generated from the full Landsat TM data set acquired over 
Greece immediately after the end of the �re season 2013. Due to the much higher 
spatial resolution of the Landsat TM data compared to the MSG/SEVIRI-based 
�re detections, the derived BSM polygons were considered an ideal validation 
data set to assess the �re detection algorithm’s robustness. Therefore, the accu-
racy of the MSG/SEVIRI active �re detection was assessed through the estima-
tion of the commission error, that is, returned as hotspots by the MSG/SEVIRI 
processing chain but not included in the BSM polygons, and the omission error, 
that is, the number of hotspot locations from the reports included in the BSM 
polygon but not returned by the MSG/SEVIRI-based algorithm outputs.

Table 6.1 presents a comparison between the total BSM area and the area 
that was successfully detected by the real-time MSG/SEVIRI-based wild�re 
detection algorithm. Ninety-three percent of the burnt areas’ surface mapped 
over the entire country matches with the returned MSG/SEVIRI-based �re 
polygons detected, and only a percentage of 7% of the burnt areas was missed. 

An additional criterion for assessing the algorithm’s accuracy is shown in 
Table 6.2. This table represents the number of �re events reported by the �re 
brigade log �les (Column 2 of Table 6.2) that were successfully matched with 
the returned active �re detections (Column 3 of Table 6.2) in relation to the 
size of the affected area.

TABLE 6.1

Comparison of the BSM Total Area, with the BSM Area Detected by 
the MSG/SEVIRI Wild�re Detection Algorithm at National Scale

Area Size (ha)

Nationwide BSM area as mapped from the Landsat TM 
imagery (BSM-NOA)

20,100

Nationwide BSM area returned by the MSG/SEVIRI- 
based real-time detection algorithm

18,727 (93%)

Nationwide omitted BSM area not returned by the MSG/
SEVIRI-based real-time detection algorithm

1,373 (7%)
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Smaller size �res, with active burning areas of less than 50 ha, could not be 
detected by the system with adequate accuracy. This is because the �re radi-
ation emitted is not at the required level to saturate the corresponding low 
spatial resolution MSG/SEVIRI pixel. Another reason relates to the fact that 
the �re detection system has an internal control mechanism, which returns 
a �rst �re occurrence only after it has been detected in two out of the three 
consecutive observations. Therefore, for small �res that are rapidly con-
trolled by the �re�ghting mechanism, that is, within the �rst 15–30 minutes, 
there is not enough time for the system to con�rm that its �rst detections 
match with the subsequent two to three observations. This control mecha-
nism prevents the system from sending �re alarms to the �re brigades that 
are not certain.

Thus, for the above reasons the detection ef�ciency of the system for small 
�res is limited to the order of 32%. However, as shown in Table 6.2, larger 
�re events with sizes greater than 50 ha were adequately detected by the 
system with a level of accuracy ranging between 75% and 100%. There are 
two main reasons for the omitted detections: the �rst one relates to the pres-
ence of sparse clouds in the �eld of view of the sensor, while the second is 
because, for a few cases, the algorithm thresholds were not appropriate to 
detect the wild�re. However, lowering the thresholds would lead to increas-
ing the false alarm rate; as expected, there is always a trade-off between false 
positives and false negatives. 

To evaluate the capability of the real-time detection process to timely 
detect a �re event, the �rst �re alarm returned by the system was compared 
with the ignition time provided in the �re brigade log �les. Table 6.3 sum-
marizes the outcome of this validation. Out of the total of 45 �re events used 
for validation, 7 were �rst detected earlier than their announcement from the 
�re brigade control room. For the remaining events, 11 were detected with a 
delay of 0–15 minutes, 6 with a delay of 15–30 minutes, and 18 with a delay 
of 30–45 minutes.

TABLE 6.2

Comparison of the Reported Fire Events in the Fire 
Brigades Log Files, with the Active Fire Events Returned 
by the MSG/SEVIRI Forest Fire Detection Algorithm

Affected 
Area (ha)

Total Fire 
Events (Fire 

Service)

Reported by Fire 
Brigades and Matched 

by MSG/SEVIRI

Level of 
Matching 

(%)

0–50 57 18 32
50–100 12 9 75
100–150 3 3 100
150–200 4 4 100
≥200 11 11 100
Summary 87 45 52
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179Remote Sensing Techniques for Forest Fire Disaster Management

BSM-NOA Service

The entire BSM-NOA service chain was extensively evaluated by subjecting it 
to a standardization procedure using several criteria (thematic accuracy, user 
support, sustainability of the means used, transferability, timeliness,  etc.). 
The validation was done in the framework of the RISK-EOS/ESA/GSE and 
SAFER EC/GMES projects, which aimed to establish quali�ed and validated 
emergency response and emergency support services based on EO technol-
ogy to meet the operational needs of the end-user communities. The valida-
tion experiments were internal in NOA and external from the Joint Research 
Centre, using high accuracy reference data over various European test sites 
(Greece, Portugal, Spain, and Corse). Scienti�c and technical validation of 
the product was carried out both in terms of vector data and map layout. The 
validation experiments compared the service BSM-NOA products against 
ground-truth data, the latter generated through dedicated in situ �eld cam-
paigns. The surface accuracy �gures are expressed in terms of detected area 
ef�ciency, skipped area rate (omission error), and false area rate (commission 
error). These accuracy �gures were calculated on the basis of the following 
formulae:

 =
+

Detected area efficiency
DBA

DBA SBA
 (6.6)

 )( =
+

Commission error flase area rate
FBA

DBA FBA
  (6.7)

 )( =
+

Ommission error skipped area rate
SBA

DBA SBA
  (6.8)

where DBA is the detected burnt area (common area between the generated 
burn scar polygon and the reference in situ polygon), FBA is the false burnt 
area (area included in the generated burn scar polygon but not in the refer-
ence in situ polygon), and SBA is the skipped burnt area (area included in the 
reference in situ polygon but not in the generated burn scar polygon).

TABLE 6.3

Comparison of the Time an Event Was First Detected 
by the Forest Fire Detection Algorithm with the 
Time Given by the Fire Brigades Service Report

Time Difference (minutes) Number of Events

–15, 0 7
0, 15 11
15, 30 6
30, 45 18
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180 Integrating Scale in Remote Sensing and GIS

The results of the validation experiments showed that the BSM-NOA 
service, and its subsequent evolution as a module of the NOA FireHub 
platform, is capable of processing images with different spectral and spa-
tial resolutions and can effectively exploit data from different acquisition 
modes (uni- and multitemporal). In a multitemporal approach using a pair of 
Landsat 5 TM images, the method performed better than using a single-date 
image in identifying the post�re decrease of vegetation vigor and minimiz-
ing the spectral confusion of burnt areas with classes such as permanent 
crops, bare soil, shadows, urban fabric, and water. The minimum burnt 
area size detected is approximately 0.9–1.0 ha nonetheless, and the method 
performs well in delineating small �res of ~0.8–2.5 ha located in the alpine 
zones of the Mediterranean mountains.

The overall burnt area detection accuracy returned in the different evalua-
tion experiments conducted reached levels of 85%–91%, with omission errors 
at the level of 9%–15% and commission errors as low as 6%–4% (Kontoes 
et al. 2013a). In fact, the service was quali�ed in the framework of the SAFER 
EC/GMES project—top of its class—as an end-to-end service for �re-related 
emergency support activities for integration into operational scenarios all 
over Europe. Figure 6.8 illustrates the BSM polygons for the Penteli Mt  (2007) 

Overview

a

b

Parnitha Mt.

(a)

M t .  P a r n i t h a

(b)

Penteli Mt.

Mt. Penteli

FIGURE 6.8
Burn scar mapping in the Mt. Parnitha and Penteli Mt. �res using the BSM-NOA method. 
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181Remote Sensing Techniques for Forest Fire Disaster Management

and Mount Parnitha (2007) �res in Greece, as well the omission (white areas) 
and the commission errors (black areas) reported with respect to the refer-
ence validation data used (Kontoes et al. 2009).

Discussion and Conclusions

The application of the MSG/SEVIRI active �re detection methodology over 
Greece has provided objective and accurate detections of wild�re spots 
with satisfactory accuracy on a 5-minute basis. The reported results pro-
vide insights into the method’s �exibility, timeliness, and ef�ciency, espe-
cially when applied to very large areas that extend beyond the national scale. 
Moreover, the active �re maps generated when used in combination with 
highly accurate fuel maps can provide a useful overall �re situation aware-
ness picture for the effective deployment of �re suppression resources and 
promoting evidence-based decision-making. 

Based on the speci�c end-user demands, the �re detection algorithm was 
expanded further during the development of the FireHub platform oper-
ated by NOA’s BEYOND Center of Excellence for EO-based monitoring and 
management of natural disaster. This patent-pending approach results in a 
subpixel approximation (500 × 500 m wide) of wild�re presence within the 
initial MSG/SEVIRI pixel. Several elements and information layers were 
taken under consideration to achieve such a level of precision. A sophisti-
cated data fusion approximation is used, combining satellite �re detections 
with updated fuel data and �re spread models using real-time weather infor-
mation. The hotspot detection methodology was assessed against reference 
information on real cases of �re events, with the conclusion of accurate �re 
estimation, with certain restrictions when it comes to small �re events. 

According to the feedback received from the �re brigade and civil pro-
tection authorities, the FireHub approach with its enhanced spatial resolu-
tion is exceeding the EO-based real-time active hotspot detection standards 
established by the �re and forestry bodies for supporting actions relating to 
wild�re suppression management. Following the Copernicus (GMES) stan-
dards, the method is characterized by high �exibility and transferability; 
that is, it is applicable to other geographic areas in Europe, featuring an 
interactive approach for the de�nition and �ne tuning of the spectral thresh-
olds for active �re spot detection. Moreover, the dynamic integration of 
medium resolution satellite images that are acquired every 2–3 hours at the 
NOA reception stations, such as NOAA/AVHRR, MODIS, Suomi NPP, and 
MetOp, can update the hotspot products derived from the MSG/SEVIRI 
low spatial but high temporal resolution sensor, constituting a suitable 
and robust solution for operational active �re monitoring at the European, 
national, and regional levels. 
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182 Integrating Scale in Remote Sensing and GIS

This chapter also provided concrete evidence that the NOA’s FireHub 
 platform offers advanced burnt area mapping capabilities to meet rush and 
nonrush �re mapping needs for emergency response, emergency support, 
and  recovery operations at the regional, national, or continental levels. 
It  requires limited effort from an operator and returns higher mapping 
accuracies, compared to conventional mapping approaches (e.g., �eld sur-
veys, aerial photo interpretation, GPS campaigns, etc.), as shown by Kontoes 
et al. (2009). The mapping accuracy of the developed remote sensing method 
was assessed in a very challenging environment, namely the accentuated 
relief and highly diversi�ed ecosystems of the mountainous terrain of Greece. 
The approach proved highly sensitive in detecting burnt areas and avoiding 
spectral confusion with other classes such as bare soil, urban fabric, water, 
and permanent crops. Finally, the methodologies presented here, as well as 
the overall experience gained through several Copernicus (GMES) projects, 
suggest that the satellite-based mapping methods can certainly replace pre-
vious mapping methods, providing accuracies that exceed the end-user’s 
operational requirements. 

The NOA Web services (�re detection and monitoring, as well as BSM-
NOA) and the generated products are delivered to institutional end 
users (e.g., Hellenic Fire Brigade, General Secretariat of Civil Protection, 
Copernicus EMS, Forestry Services, etc.) and are now part of the everyday 
decision- making processes of these institutions. As such, the FireHub plat-
form was awarded �rst prize for Best Challenge Service in the Copernicus 
Masters Competition of 2014. 
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