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a b s t r a c t

In this paper a novel integrated hybrid methodology for unsupervised change detection between
Unmanned Aerial Vehicle (UAV) and satellite images, which can be utilized in various fields like security
applications (e.g. border surveillance) and damage assessment, is proposed. This is a challenging problem
mainly due to the difference in geographic coverage and the spatial resolution of the two images, as well
as to the acquisition modes which lead to misregistration errors. The methodology consists of the follow-
ing steps: (a) pre-processing, where the part of the satellite image that corresponds to the UAV image is
determined and the UAV image is ortho-rectified using information provided by a Digital Terrain Model,
(b) the detection of potential changes, which is based exclusively on intensity and image gradient infor-
mation, (c) the generation of the region map, where homogeneous regions are produced by the previous
potential changes via a seeded region growing algorithm and placed on the region map, and (d) the eval-
uation of the above regions, in order to characterize them as true changes or not. The methodology has
been applied on demanding real datasets with very encouraging results. Finally, its robustness to the mis-
registration errors is assessed via extensive experimentation.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Change detection (CD) is an important research problem which
finds application in various remote sensing areas, including land
use or land cover change (Byrne et al., 1980; Deng et al., 2008;
Kontoes, 2008; Lunetta et al., 2006), forest monitoring (Collins
and Woodcock, 1996; Desclee et al., 2006), damage assessment
(Al-Khudhairy et al., 2005) and surveillance applications
(Carlotto, 1997). The main purpose of a CD method is to produce
a ‘‘change map”, i.e. a binary image that provides ‘‘change” or
‘‘no change” information between two (bi-temporal CD) or more
images (multi-temporal CD). In some cases, additional information
which indicates the kind of change, called ‘‘from-to” information,
may also be provided (Lu et al., 2004).

The main challenge in CD stems from the fact that, as the sensed
images are acquired at different times and, in some cases, by differ-
ent sensors the images cannot exactly match each other; the larger
the mismatch, the less accurate the change detection results are

expected to be. A pre-processing stage which includes (a) radio-
metric correction and (b) image registration in order to correct
these differences is required (Coppin et al., 2004). Radiometric cor-
rection diminishes intensity variations between images, which are
encountered due to different camera type, image acquisition con-
ditions (height, angle of acquisition) and environmental factors
(time in the day, illumination conditions, seasonal solar angle vari-
ations and atmospheric effects) (Singh, 1989). In many cases, the
techniques used are simple, such as intensity normalization or lin-
ear transformations of intensity (Radke et al., 2005), while in mul-
tispectral data more advanced methods can also be applied (Song
et al., 2001). Image registration is required for projecting the
images on a common reference system. It is performed by extract-
ing features from both images, matching them to acquire ground
control points (GCP) and estimating a transformation model that
is applied to one of the two images, while the other is used as ref-
erence (Wong and Clausi, 2007). In addition to these steps, images
taken from mountainous areas also need to be resampled. In gen-
eral, an average registration accuracy of 0.2–0.5 pixels (root mean
square error) is considered to be acceptable (Townshend et al.,
1992). However, misregistration errors may affect heavily the
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accuracy of change detection as false changes are introduced,
sometimes at the expense of detecting some true changes
(Bovolo et al., 2009; Chen et al., 2014; Dai and Khorram, 1998;
Townshend et al., 1992; Wang and Ellis, 2005). To avoid such a
case, they should be identified and masked out (Bruzzone and
Cossu, 2003; Bruzzone and Serpico, 1997; Gong et al., 1992;
Marchesi et al., 2010; Shi et al., 2011; Stow, 1999).

Various CD methods have been proposed in the literature;
selecting the most suitable method depends on the kind of applica-
tion and on the properties of the available remote sensing data,
namely spectral and ground resolution. CD methods are divided
into two categories, pixel-based and object-based methods
(Hussain et al., 2013). Pixel-based methods consider a single image
pixel as the unit for analysis and they are the traditional methods
for detecting changes. A difference image is generated between the
images by performing operations on their associated pixels and a
suitable threshold converts it into change map (Bruzzone and
Fernandez, 2000; Rosin and Ioannidis, 2003; Singh, 1989). How-
ever, pixel-based methods exhibit some drawbacks. First, they
are sensitive to ‘‘salt and pepper” noise. Furthermore, the ongoing
progress in multispectral imagery has enabled the acquisition of
Very High Resolution (VHR) images with rich contextual informa-
tion which is not taken into account per se by the usual pixel-based
methods. In addition, misregistration errors have a greater impact
in fine ground resolution (Bovolo et al., 2009; Chen et al., 2014;
Wang and Ellis, 2005), further supporting that pixel-based meth-
ods are unsuitable for change detection when VHR images are
used. On the other hand, object-based image analysis (OBIA) meth-
ods, take advantage of the contextual information as they group
neighboring pixels using spectral, textural and edge features in
order to segment the images under study into objects, which form
the structural units for the comparison between them. These
methods are becoming more popular in remote sensing
(Blaschke, 2010) and they are effectively used for CD (Desclee
et al., 2006; Im et al., 2008). Hybrid CD methods, which combine
image segmentation with pixel-based processing methods so that
they can benefit the most from the advantages that they offer
(Hussain et al., 2013), are also reported (Al-Khudhairy et al.,
2005). For a comparison of some of the most used CD methods,
the reader is referred to Desclee et al. (2006) and Mas (1999).

1.1. Scope of the study

Utilizing VHR images acquired by Unmanned Aerial Vehicles
(UAVs) for change detection without human inspection is a quite
new trend. UAVs are suitable for surveillance applications as they
bring many advantages, such as cost-effectiveness and quicker
deployment with reduced risk compared to manned flight opera-
tions (Rango et al., 2006). In the context of surveillance applica-
tions for crisis management, land use/land cover change, illegal
urbanization, border control and ecosystem disturbances, a UAV
can be effectively used to acquire images of a target region in need
in rush mode, meaning that a new flight plan might be designed for
a new operation and that a report needs to be produced as fast as
possible. Such an application would be most effective when the
UAV images are sent immediately for processing to an operational
Ground Control Station via a communication link, i.e. use of a co-
ordinated Unmanned Aerial System is made (Colomina and
Molina, 2014).

The images acquired should be compared to a reference of his-
torical data. However, a dataset of UAV images that provides his-
torical data is rarely available. A way out of this problem is to
use satellite images (of high resolution) as reference since they
are available periodically for almost all of the regions of interest
in earth (Fan et al., 2010). Then the acquired UAV images can be
compared to them, having almost no restriction of the spot they

are taken from. The combination of UAV and satellite images for
a more complete set of data has been studied for agriculture appli-
cations (Gevaert et al., 2015). To make this CD concept possible, the
following issues must be addressed; (a) the placement of the UAV
image on the correct location onto the satellite image plane, i.e. the
georeference of the UAV image, (b) the resulting misregistration
errors and distortion effects that are evident due to the integration
of images of different ground resolution, (c) the possible absence of
a detailed surface model of the reference (d) the need for unsuper-
vised CD due to the lack of ground truth of the changes of interest
and (e) the need for fast processing so that any reports can be pro-
duced short after the acquisition of a set of UAV images. The latter
constitutes a requirement for near real time processing that also
limits the time to be spent on image pre-processing. Thus there
is the need of trading off the quality of photogrammetric recon-
struction of the images in return for fast overall processing.

In this paper, a methodology for detecting changes between two
images taken of the same area from different kind of optical sensors,
namely a UAV camera and a VHR satellite sensor, is proposed. To
the best of our knowledge, this is the first time that a methodology
that detects changes between low altitude VHR UAV images and a
VHR satellite image that is used as a fixed reference of historical
data is reported in the bibliography. The key aspect of the proposed
methodology is that it consists of several processing stages, per-
formed one after the other, which use appropriately tailored com-
puter vision techniques with aim to diminish the effects
encountered during CD. Its novelty lies mainly in the way that the
combination of these stages is designed so that it brings a near real
time solution to the specific CD problem as a whole in a fully inte-
grated and unsupervised way. The methodology has been tested in
challenging datasets of images with very encouraging results. Its
robustness to misregistration errors is also assessed by simulating
misregistration errors. This methodology has been developed to
work with RGB images, but it can also be extended to multispectral
images. In the latter case, one could take advantage of the richness
in spectral features and add or modify some processing steps.

Few works on CD using UAV images are found in literature,
most of which adopt an object-based approach for defining objects
in order to detect and evaluate changes. In Coulter et al. (2011), a
complete surveillance system using UAV imagery is presented.
Image differencing is used with aim to achieve near real-time CD,
however, misregistration errors and distortion effects are not taken
into consideration. Shi et al. (2011) combine a change map with
image segmentation as a refinement stage, where changes that
have occurred in the strict neighborhood of matched GCPs are con-
sidered as misregistration errors and they are rejected. Qin (2014)
presents a method that segments two UAV images into primitives,
by using textural and geometric features, and performs object-
based CD on them. Dense point clouds are extracted from Semi-
Global Matching and are used to generate a Digital Surface Model,
which provides the geometric features. This method is based on
height information and is effectively used in urban areas. Wang
et al. (2013) also perform image segmentation, a Support Vector
Machine classifies the segments to known classes and finally CD
is performed on the result of the classification. All of the above
methods detect changes on pairs of UAV images that are taken
from the same spot. It is implied (if not stated) that the images
have been acquired by the same sensor and from the same height,
which results in images of the same ground resolution. This is not
the case for the CD problem that is examined in our paper, which
becomes more challenging due to the different acquisition condi-
tions, but this does not impose any restriction to the spot where
the images are acquired to ensure sufficient image overlap. Finally,
Chen et al. (2015) acquire a large number of UAV images of an
urban area in different dates, create depth maps via 3D point
clouds and subtract them for building change detection.
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This paper is organized as follows. In Section 2, the proposed
change detection methodology is presented. In Section 3, a CD
experimental setup is described whose aim is (a) to assess the per-
formance of the proposed methodology in determining true
changes and (b) to evaluate the robustness of the proposed CD
methodology to misregistration errors. The results of these exper-
iments are presented and discussed in Section 4. Finally, conclud-
ing remarks are included in Section 5.

2. Proposed change detection methodology

The proposed change detection methodology consists of four
major processing stages, which are summarized in Fig. 1 while
the most common notations that are found throughout this paper
are listed in Table 1. First of all, the UAV image is pre-processed so
that to be in a form suitable for comparison with the satellite
image; at this point, the part of the satellite image that represents
the same area as the UAV image is automatically determined and
the UAV image is ortho-rectified. A Digital Terrain Model (DTM)
that has a lower ground resolution than the VHR optical images
is used for the ortho-rectification, so that to represent a case where
a detailed surface model of the area under study is not available.
Then, a difference image between them is properly generated in
a way that it remains almost unaffected by pixel misregistration
problems encountered during the ortho-rectification of the UAV
image; the difference image is thresholded and potential change
components (PCC) are extracted. Independently of this process,
the UAV image is also segmented into two classes, the ‘‘bare
ground” and the ‘‘high saturation” class and then, a seeded region
growing (SRG) algorithm based on (a) spectral features, as well as
on (b) the segmentation result of the UAV image, is used to define
homogeneous regions (RegUAV ) around the locations indicated by
potential changes. Finally, each homogeneous region is evaluated
based on criteria concerning (a) the area of change and (b) tem-
plate matching on the satellite image and it is approved as true
change or rejected. Thus, it is considered to be a hybrid CD method-
ology, as it combines pixel-based image processing and threshold-
ing with image segmentation and object extraction techniques.

In the sequel we describe in detail the processing stages
involved in the proposed method. For the ease of presentation
we name them as follows: (a) image pre-processing, (b) extraction
of potential change components, (c) region map generation, (d)
evaluation of regions.

2.1. Image pre-processing

2.1.1. Image registration
The goal of this procedure step is to generate an ortho-rectified

UAV image ðImUAV Þ scaled down to the resolution of the satellite
image in order to superimpose it on the satellite image and detect

changes. In the scope of this study it is assumed that only an
approximate position of each UAV image is available but its full
exterior orientation is not. It is also assumed that the satellite
image has been ortho-rectified using Rational Polynomial Coeffi-
cients (RPC) and a Digital Terrain Model (DTM). The method for
image registration used here is the one that is described in
Mendoza-Schrock et al. (2009) and Oh et al. (2011).

Full interior and exterior orientations are necessary for the gen-
eration of ortho-rectified images, which can both be calculated via
photogrammetric resection. The latter is a known procedure that
requires an adequate number of control points. These points are
extracted automatically using a SIFT–RANSAC regime, as explained
below.

SIFT (Lowe, 2004) keypoints are extracted on both UAV and
satellite images. In order to assist correct match detection, a sec-
tion of the satellite image is cropped given the provided approxi-
mate position of the UAV image. Initial SIFT matches are
calculated between the UAV and satellite images and are then val-
idated via RANSAC (Fischler and Bolles, 1981). The geometric
model enforced by RANSAC is a projective transformation.

The matches detected by SIFT–RANSAC are then used as control
points. The point coordinates detected on both UAV and satellite
images are used as x, y aerial-image coordinates and X, Y world
coordinates respectively, by implementing simple affine transfor-
mations. The Zworld coordinate for each control point is calculated
through interpolation (linear interpolation is used) from the
equally spaced elevation values provided by the DTM, since the lat-
ter is expected to be of a lower resolution than that of the UAV and
satellite images. The interior and exterior orientations are then

Fig. 1. The processing stages of the change detection methodology. The input, output and temporary products are also shown.

Table 1
The definition of the most common notations.

Name Description

ImUAV The ortho-rectified UAV image that is compared to the reference

Imsat ; ImDTM The cropped images of the reference (satellite image and DTM
respectively) that correspond to the area depicted in the UAV
image

slopemask The binary mask for excluding areas of large slope gradients

(derived from ImDTM)
D;Dth The difference image between ImUAV and Imsat , and the resulting

binary image after thresholding, respectively
Wij The search window centered on a pixel of Imsat , i.e. Imsatði; jÞ
PCCk A connected component that is extracted from Dth

RegUAV A homogeneous region that is defined by the SRG algorithm

Regid A homogeneous region that has been registered on the Region
Map

SegUAV ; Segsat Rectangular cropped parts of ImUAV and Imsat for estimating
edge and intensity parameters

þn SegUAV The number of pixels for expanding the cropped part of an
image, with reference to the size of a PCCk or a Regid that is
included
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estimated via Least Squares (LS) minimization on a photogrammet-
ric resection model.

This determines the correct position of the initial UAV image in
relation to the DTM, thus allowing to superimpose color informa-
tion from the UAV on the DTM. Generating an ortho-projection
of the now colored DTM produces the final ortho-rectified UAV
image (ImUAV ). This way, the UAV image falls down to the same res-
olution as the satellite image and the scale difference problem is
solved. The last step is to crop the section from the satellite image
corresponding to ImUAV as to result in Imsat . These two images,
ImUAV and Imsat , are the input to the proposed CD methodology.

The registration accuracy of the ortho-rectified UAV image
depends greatly on the accuracy and detail of the DTM since the
latter is involved in the calculation of the control point world coor-
dinates, the final texturing and also the ortho-rectification of the
satellite image. If the elevation information is not accurate or
dense enough, misregistration errors are expected to occur. Such
errors are handled as explained below (Section 2.2.2).

2.1.2. Intensity normalization
In order to compensate for radiometric differences between

ImUAV and Imsat , pixel intensity values for the channels

CUAV 2 fRUAV ;GUAV ; BUAVg that constitute ImUAV are normalized
according to

C 0UAV ¼ rsat
C

rUAV
C

ðCUAV � lUAV
C Þ þ lsat

C ð1Þ

where rsat
C ;rUAV

C are the standard deviations of the intensity values

of Csat and CUAV respectively, and lsat
C ;lUAV

C their respective mean
values.

2.1.3. Steep slope exclusion
As expected, extremely steep slopes were significantly distorted

after the ortho-rectification of the UAV image. Consequently,
change detection should exclude these areas, since the distorted
areas are very likely to be incorrectly returned as changed areas
while, in addition, no man-made changes are expected to be found
in steep slope areas.

Using the DTM image of the region under study, denoted by
ImDTM , the slope of each region in the image can be estimated via
slope gradients (large gradients indicate steep slopes). The
approach adopted here is to calculate the horizontal and vertical
elements of the elevation gradient at each pixel ði; jÞ using Prewitt
operator (Gonzalez et al., 2002) premultiplied by 1/3. This
approach smooths the difference values calculated on the interpo-
lated ImDEM image.

Speaking in more mathematical terms, the slope gradient vector

dhi;j ¼ ½dhx
i;j; dh

y
i;j�

T
at each pixel is calculated via the following

equations

dhx
i;j ¼

1
3

Xiþ1

k¼i�1

ðImDTM
k;jþ1 � ImDTM

k;j�1Þ ðhorizontalÞ ð2Þ

dhy
i;j ¼

1
3

Xjþ1

k¼j�1

ðImDTM
iþ1;k � ImDTM

i�1;kÞ ðverticalÞ ð3Þ

Given that the image resolution is l meters, the two-pixel cen-
tral difference is 2l m. If the slope gradient threshold is set at
100%, a mask that excludes the pixels with steep slope is created as

slopemask
i;j ¼ 1; jdhi;jj P 2l

0; otherwise

�
ð4Þ

where jdhi;jj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdhx

i;jÞ
2 þ ðdhy

i;jÞ
2

q
.

2.2. Extraction of potential change components

Having completed the preprocessing stage, we proceed to the
first processing stage, which begins with the generation of the
image of differences between ImUAV and Imsat . However, before
that, an appropriate representation for the image pixels should
be decided. Such a representation includes intensity and edge
information, as well as local neighborhood information, as is
described next.

2.2.1. Descriptors
A vector of extended descriptors is constructed for every pixel

in both ImUAV and Imsat images by integrating information from
the pixel itself and its 8 nearest neighbors. A similar approach
which uses the neighborhood of a pixel is found in Im and Jensen
(2005). The resulting vector is 36-element-long and it consists of
(see also Fig. 2):

� The RGB values of the pixel itself and its eight-connected neigh-
borhood, that is a total of 27 elements (9 pixels � 3 intensity
values).

� The intensity gradient magnitude values of the pixel’s neighbor-
hood (9 elements). These values are stored in intensity gradient

images IGUAV and IGsat that are produced from
1. converting ImUAV and Imsat into grayscale luminance images

YUAV and Ysat , respectively, as in Poynton (2003)

YK
i;j ¼ 0:299 � RK

i;j þ 0:587 � GK
i;j þ 0:114 � BK

i;j; K ¼ fUAV ; satg
ð5Þ

2. filtering YUAV and Ysat with Sobel operator (Sobel and

Feldman, 1973) to produce IGUAV and IGsat , respectively
3. scaling the values of each intensity gradient image into

½0;1� range. This step is required in order to have the same
range of values for all the components of the descriptor.

2.2.2. Generation of difference image
Although the algorithms used for ortho-rectification are quite

accurate, they cannot guarantee total elimination of possible pixel
misregistration in the two images. Thus, the homologous of a pixel
in ImUAV may be some pixels misplaced in Imsat . Consequently, any
pixel-based differencing method is very likely to produce a vast
amount of unreliable results. To overcome this misregistration
and to compute an accurate difference image D, a search is per-
formed for each pixel in ImUAV in order to locate its homologous
pixel in Imsat as follows.

Let ImUAV
i;j be the ði; jÞ UAV pixel and ui;j its descriptor vector.

Firstly, a search window Wij of size w�w pixels, which is defined
as

Wij ¼ fðx; yÞ 2 N2 : x 2 ½i� bw=2c; iþ bw=2c�;
y 2 ½j� bw=2c; jþ bw=2c�g ð6Þ

where w is an odd integer and operator b�c denotes floor function, is
centered at the ði; jÞ pixel of Imsat , defining a square region of pixels
on Imsat that are possibly homologous to the ImUAV

i;j pixel. Then, the
Euclidean distances between ui;j and each one of the respective
descriptors vx;y of the pixels within Wij in Imsat are calculated. The
position of the minimum of these distances indicates the homolo-
gous to ImUAV

i;j pixel in Imsat (see Fig. 3), while this minimum distance
is also registered as the difference between the two images at pixel
ði; jÞ, i.e.,

Di;j ¼ min
x;y2Wij

kui;j � vx;yk2 ð7Þ
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where the operator k � k2 denotes Euclidean norm. For the sake of
brevity, we will refer to values in the difference image D as differ-
ence values. A similar approach was successfully used and validated
in Kontoes (2008), while a search window was also used in Tian
et al. (2014) for producing a difference image between two Digital
Surface Models in a robust way.

It is obvious that, if there is no homologous pixel within the
search window, which may be due to a change at this region, the
minimum distance refers to its most similar pixel. Clearly, large
difference values can be used as indication of a change at that
pixel. The parameter w should be adjusted to reflect the maximum
misregistration error that is expected. A large window may lead to
wrong matches whereas a small one restricts the search into a
small area which may not contain the true homologous pixels, pro-
ducing higher difference values.

2.2.3. Potential change components
The next step is to focus on high difference values in order to

extract potential change components, which will be further pro-
cessed and evaluated as true changes or no changes. Potential
changes are defined as large compact regions in D where the pixels
have high difference values. They are identified as described next.

First, D is thresholded using the non-parametric Rosin’s method
(Rosin, 2001), resulting in the binary image Dth. Then, connected
components are extracted from Dth using 4 nearest neighbor con-
nectivity. Connected components smaller than N1 pixels are
ignored; the rest are denoted as potential changes. The parameter
N1 is set so as to reflect the size of the smallest change component
of interest, depending on the resolution of the image. For example,
the N1 value of 20 pixels on the VHR UAV image with spatial reso-
lution of 0.5 m on the ground corresponds to the average car size.
From here on, potential change components will be denoted as
PCC’s (the ’s notation will be used hereby as the plural number of
the mentioned components).

2.3. Region map generation

Potential changes are raw clusters of pixels where notable dif-
ferences have occurred. It is essential that these changes undergo
processing in an object oriented way so that the natural objects
that cause these differences are properly defined.

This processing is performed with the use of the seeded region
growing (SRG) technique (Gonzalez et al., 2002). The PCC’s desig-
nate specific spots in the image that need to undergo processing

Fig. 2. Constructing the descriptor vector for a pixel.

Fig. 3. Searching for homologous pixels (the � mark) in Imsat (right) for each pixel in ImUAV (left) (the cross mark) using a window wij , the size of w�w ¼ 11� 11 pixels. A
misregistration error of

ffiffiffiffiffiffi
10

p
pixels is easily noticeable for this pixel.

A.L. Fytsilis et al. / ISPRS Journal of Photogrammetry and Remote Sensing 119 (2016) 165–186 169



and a SRG algorithm is adopted to define homogeneous regions,
denoted as RegUAV ’s. Homogeneity is defined in terms of the exis-
tence of (a) vegetation, shadow components and colorful objects
(high saturation class) or (b) ground surface with no vegetation
(bare ground class) (Section 2.3.1). The RegUAV ’s are then registered
in a region map which keeps track of the defined regions
(Section 2.3.2).

2.3.1. Image segmentation
This step is applied to the whole image, irrespective of the

extracted PCC’s. To this end, the ImUAV image is transformed into
the HSI space (Gonzalez et al., 2002), where each pixel is character-
ized by the attributes of Hue, Saturation and Intensity. The first
two carry color information; hue defines pure color identity on a
½0�;360�� range; saturation is the rate of the white light component
blending with pure color. The intensity in each pixel is the received
power of the visible light, it is calculated as the average of RGB
components and, in fact, it is a grayscale version of the color image.

Based on these attributes, the UAV image is segmented into the
following two classes:

� the ‘‘high saturation” class, which consists of vegetation, sha-
dow components and colorful objects, and

� the ‘‘bare ground” class, which includes the ground surface that
receives direct sunlight and where no vegetation is grown.

Image segmentation is carried out as follows. First, the Normal-
ized Difference Saturation Index for each pixel is calculated as

NDIi;j ¼ Si;j � Ii;j
Si;j þ Ii;j

; ð8Þ

where Si;j and Ii;j are the pixel saturation and intensity values
respectively, according to the HSI color space. The more saturated
the color or the lower its intensity, the larger the ratio. This index
was originally proposed in Singh et al. (2012) for shadow detection
since shadow components emit light radiation of very low intensity
that is also saturated with blue wavelength. However, we observed
that NDI value was relatively high for vegetation pixels as well,
since they are highly saturated with green (and maybe red) color
and their intensity is relatively low. Then, a suitable threshold t
for discriminating the two classes of interest is obtained by per-
forming the Rosin’s method (Rosin, 2001) on NDI. Thus, the gener-
ated binary image J that identifies the discrimination is defined as

Ji;j ¼
1; NDIi;j P t ðhighly saturated classÞ
0; otherwise ðbare ground classÞ

�
ð9Þ

The result of the image segmentation step is shown in Fig. 4.
Since the PCC’s extraction and image segmentation steps are

performed separately, a PCC may include pixels that belong to both
‘‘bare ground” and ‘‘high saturation” classes, as shown in Fig. 5. In
such a case, a PCC is further divided into several homogeneous com-
pact components PCCk, k ¼ 1;2; . . ., first by class, and then by con-
nectivity (i.e. by neighboring pixels), so that each PCCk contains
neighboring pixels that belong to only one of the two classes. Then,
the SRG algorithm is called for each PCCk instead.

2.3.2. Filling region map

The region map is initially a blank image, of the size of ImUAV

and is built in a sequential manner. Specifically, as PCCk’s are
extracted sequentially, one after the other, one or more RegUAV ’s
are defined via the SRG algorithm (see Section 2.3.3). Once a
RegUAV region is defined, it must be registered on the region map,
by acquiring a unique identification number (id) and marking this

id in the positions that correspond to the pixels that belong to
RegUAV . The procedure for each PCCk is as follows.

1. For a given PCCk the SRG algorithm is used to define the homo-
geneous region (RegUAV ) on ImUAV . It is noted that each RegUAV is
grown based only on information found in ImUAV , regardless of
the thresholded difference image Dth. As a matter of fact, pixels
that belong to RegUAV may or may not belong to any PCCk

component.
2. The new region RegUAV must be registered on the region map. As

the regions are grown separately, it is possible that there is an
intersection between RegUAV and one or more regions that have
already been registered on the region map (denoted by Regid). In
this case, RegUAV may be merged with one or more of them, if
they are similar with respect to a similarity criterion. If not, a
screening procedure is performed. On the screening procedure,

Fig. 4. The image segmentation result. The contour encircles the ‘‘high saturation”
class while the rest belongs to ‘‘bare ground” class.

Fig. 5. The contour encircles a potential change component (PCC) that contains
pixels from both classes, i.e., a large shadow component (‘‘high saturation” class)
and two small groups of neighboring road pixels (one on the top and one on the left
part of the PCC – ‘‘bare ground” class). The PCC is split into three PCCk components;
then, a SRG is applied for each one of them separately.
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every pixel ði; jÞ that belongs to both regions must be assigned
to the most appropriate one. The decision is based on minimum
Euclidean distance between ImUAV

i;j and the mean intensity value
of each region. This action constitutes a refinement procedure,
before a new RegUAV can be registered on the region map. The
way the RegUAV is registered in the region map is described in
full detail in Appendix A. An illustrative example of the result
of this procedure is shown in Fig. 6.

3. Once the RegUAV has finally been registered on region map, the
pixels that belong to the region are removed from PCCk, i.e.,
PCCk ¼ PCCk � RegUAV . Pixels ði; jÞ that have intensity gradient
values higher than a specified value, i.e. IGUAV

i;j > m � p1 �mmax,
are also removed from PCCk, as they contribute little to object
representation and it is highly probable that they will not be
included in any region. In the previous inequality:
� mmax is the maximum gradient value, which is computed in a

region around PCCk, denoted by SegUAV , and is defined as fol-
lows: let Boxk the bounding box that corresponds to PCCk, of
size wk � hk. SegUAV is a rectangular frame of size
ðwk þ 2 � n1Þ � ðhk þ 2 � n1Þ in which Boxk is centered, as
shown in Fig. 7. The parameter n1 is set properly to define
a rectangular region large enough to capture the edge infor-
mation in a small area surrounding PCCk. From here on, such
segments will be denoted as +n segments.

� p1 2 ð0;1Þ.

In other words, m is set to a percentage p1 of the maximum gra-
dient value mmax that appears within the area around PCCk. This
way, m is not predefined, but it is adapted properly according to
the local sharpness of the image, although it is still dependent on
the user-defined parameter p1.

Finally, steps 1 and 2 are repeated until PCCk contains no clus-
ters of pixels of significant size (less than N0

1 pixels).

2.3.3. Seeded region growing algorithm
At this point we describe the SRG algorithm, which was devel-

oped for defining a single homogeneous region RegUAV stemming
from a given PCCk. As it has been mentioned previously, the result-
ing region may also contain pixels that do not lie in any of the PCCk

components.
At first, the region consists of a single pixel, the ‘‘seed”. A proper

selection for the seed is the centroid of a potential change compo-
nent PCCk. Then, its neighboring pixels are checked for being
included in the region with respect to one or more homogeneity
criteria. Those of them that satisfy these criteria are added to the
region, leading to the growing of the region. On the other hand,
those of them that do not satisfy these criteria are marked as

contour pixels and are not checked again. The procedure is applied
iteratively and terminates when no more pixels satisfy the estab-
lished criteria. At that point, the region is encircled by the contour
pixels, which are given a second chance to be included in the
region. This will help in defining the region in better detail. An
example of the growing of a homogeneous region RegUAV is shown
in Fig. 8.

The adopted homogeneity criteria are:

� The region class, as defined from the image segmentation step. A
RegUAV must grow with pixels that belong to the same class. It
should be noted that both shadow components, trees and color-
ful objects belong to the ‘‘high saturation” class, so a region
seeded in a shadow component may grow into an object-plus-
shadow component.

� The mean color intensity value. A RegUAV must be homogeneous
with respect to color intensity; that is, pixels belonging to
RegUAV should not deviate much from the region’s mean inten-
sity value. This way, for each pixel neighboring to the RegUAV

as it has been formed up to now the Euclidean distance is calcu-
lated between its color intensity value and RegUAV mean color
intensity value. If this distance is lower than a predefined
threshold, d1 for a ‘‘bare ground” region and d01 for a ‘‘high satu-
ration” region, the pixel is included in the region.

Besides these criteria, the area of the region is also taken into
account. It is possible that PCCk is a part of a very large natural
component, such as a road. For the sake of processing speed and
interpretation simplicity, it may not be desirable to grow the whole
region, but, instead, to break the iteration process when the size of
the RegUAV becomes very large. For this reason, a maximum area
threshold is also set.

As it was mentioned before, when the algorithm terminates, the
contour pixels are given a second chance to be included in the area.
The intensity gradient homogeneity criterion is used to stop the
growing of RegUAV when approaching edges. However, large inten-
sity gradient values are found in both sides of an edge. This is vis-
ible in Fig. 7. This way, an extra homogeneity criterion is checked
in order to include pixels which belong to an object and are located
at the inner side of the edge. The mean lC and standard deviation
rC for each channel C 2 fR;G;Bg are calculated from RegUAV pixels.
For every contour pixel, whose intensity values are represented by

vector p ¼ ½pR; pG; pB�T , if its difference from the region mean value

is less than two standard deviations, i.e. jpC � lC j < 2 � rC in at least
two of the fR;G;Bg channels, the pixel is included in RegUAV .

Finally, due to coarse texture of ‘‘bare ground” regions, a mor-
phological closing is performed on RegUAV for filling small holes.

Fig. 6. The result of the merging procedure of the new region RegUAV and the registered regions Reg1;Reg3 and Reg4.
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2.4. Evaluation of regions

Homogeneous regions were defined around potential change
components, having almost no restriction (other than maximum
area stopping criterion) regarding the generated difference image.
In this step we evaluate registered homogeneous regions, denoted
as Regid’s, that are registered in the region map, either accepting
them as changes or rejecting them.

A number of criteria for evaluating Regid’s are defined. The first
one is a minimum area criterion, as regions that are not large
enough are possibly noise artefacts or unimportant differences. A
second criterion is the percentage of the potential change over the
region. This derives from the concession that if a large part of a
homogeneous region has produced high difference values, it
should be accepted as change. If not, it should be rejected, as this
slight difference may be due to noise artefacts, shadow compo-
nents and differences in edge sharpness. Two examples, one for
each case, are presented in Fig. 9.

A third criterion for evaluating a Regid in ImUAV is to search if it
appears also in Imsat . This is checked via template matching
(Theodoridis and Koutroumbas, 2009). The aim here is to reject
regions that appear in both images but in a different way (for
example, intensity and sharpness differences due to different sen-
sor sensitivity), taking possible misplacements into account. The
search is performed by the following steps.

1. Firstly, two +n2 segments, SegUAV and Segsat , are cut from each
image around the position of the Regid under study. Then, inten-
sity normalization is applied on the UAV segment with respect

to the satellite segment. This local normalization aims to mini-
mize intensity differences that could not be diminished by the
global normalization during image preprocessing. Finally, both

SegUAV and Segsat are converted into grayscale luminance
images.

2. The search is carried out as a small +n3 segment Segobj, which
contains the Regid, is cut and slid over the Segsat , and correla-
tions r are calculated for each search point ði; jÞ using Pearson
correlation coefficient formula (Theodoridis and Koutroumbas,
2009).

The maximum correlation may indicate the position where
the search object exists. Moreover, this position should be close
enough to the position of the object in ImUAV , which is the center

of the Segobj. Therefore, the search area is limited in a disk area

of q pixels around the center of Segobj and only pixels within
this area are taken into account for finding maximum correla-
tion. If the correlation is high enough, the object is confirmed
to appear with little change in both images. The parameter n2

can be fixed to multiples of 40–50, according to the resolution
of the image, so that a large enough segment is defined to
capture local color variations (we used 100 pixels for 0.5 m res-

olution). The parameter n3 defines whether Segobj is expanded
around Regid and its values range from 0 pixels (no expansion)
to 5 pixels.

The three criteria are checked in the following order, from the
less to the most computationally demanding. If one of them is
not satisfied, the checking stops.

Fig. 7. Defining a þn1 ¼ 10 pixels segment SegUAV for gradient threshold generation.

Fig. 8. The phases of seeded region growing. In (A), the contour defines a PCCk component and the generated seed is indicated by the cross mark. In (B) some of the iterative
steps of the algorithms are shown. In (C), the final RegUAV provided by the algorithm is shown.
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1. Region area: AReg > N2 pixels, where AReg ¼ jfði; jÞ : ði; jÞ 2 Regidgj.
The threshold N2 is set accordingly to the smallest change
object of interest. Typical values range from 5 to 20 pixels for
0.5 m ground resolution.

2. Change percentage: AReg\Dth
=AReg > p3, where AReg\Dth

¼ jfði; jÞ :
ði; jÞ 2 Regid;Dthji;j ¼ 1gj.

3. Correlation coefficient: rmax < c, where rmax is the maximum cor-
relation in a disk-shaped area with a radius of q pixels.

If all these criteria are true, Regid is confirmed as change and is
registered on a change map.

3. Materials and methods

3.1. Case study

Datasets from two different areas are used in this study. The
first study area is in Markopoulo, Attica, Greece (‘‘Markopoulo
dataset”). It is an area outside the village of Markopoulo, where
the Olympic Shooting Range Hall is located. A VHR satellite image
was used as reference and a Digital Terrain Model (DTM image)
provided the height information. Eight UAV images that were cap-
tured on a different date from the satellite image were used for CD.
On that date, several vehicles were parked outside the shooting
range and detecting them was the main task of the case under
study.

The second study area is located in Samaria, Crete (‘‘Samaria
dataset”). It is an uninhabited mountainous area that is renowned
for the Samaria gorge (where steep slopes are encountered), a
national park inside the mountain range of Lefka Ori. This is a chal-
lenging area, which was selected due to its large soil and object
diversity and steep gradients. Similar to Markopoulo dataset, a
satellite image and a DTM constituted the reference, while two
UAV images taken from two spots inside this area were used for
CD; the first one depicts a relatively land area with a rocky texture,
while the second one depicts a refuge located near the edge of the
gorge. A wide variety of natural objects exist in the two images,
including clusters of trees, bushes, dirt road segments, rocks, and
a building, thus bringing a sufficient set for testing the proposed
methodology.

In both datasets, the DTM was provided by the National Cadas-
tre & Mapping Agency S.A. and it is the best available for the Greek
territory. It is worth noting that the landscape conditions of the
two study areas are significantly different in terms of topography

(e.g. in the Samaria dataset there are several steep slopes com-
pared to the Markopoulo dataset) and land use–land cover speci-
ficity (e.g. in the Samaria dataset we have almost exclusively
natural components while in the Markopoulo dataset there are also
man-made constructions). In addition, the UAV images from Mar-
kopoulo were acquired from a lower flying altitude, which pro-
vides images of higher ground resolution and smaller footprint.
The wide area satellite images, as well as some small cropped seg-
ments from the UAV and the satellite images, are shown in Fig. 10.
The large difference in the ground resolution of the UAV and satel-
lite images is easily observable. In addition, the properties of these
datasets are listed in Table 2.

3.2. Methods

3.2.1. Detecting changes
The proposed methodology was used to register the UAV

images on the reference satellite image and detect changes in an
automatic way. The values of the user defined parameters and
thresholds were set empirically and they are listed in Table 3.
The resulting ortho-rectified images ðImUAV Þ were also manually
inspected for changes, compared to their respective part in the
satellite image ðImsatÞ, and a ground truth binary change map
was obtained. This was done to compare the automatic change
detection methodology to the manual inspection performed by
an image analyst, in the context of surveillance applications.

The manual inspection revealed the following kinds of change.
Regarding the Markopoulo dataset, a total number of 33 cars were
identified near the shooting range, as well as 5 motorbikes, a bus
and the remnants of two buses that had been disassembled before.
Concerning the Samaria dataset, three changes were highlighted
for the first set of images and 15 for the second one. The main
change of interest is a couple of cars that were parked outside
the refuge. Small land components were also highlighted as
change, whose texture or spectral appearance seemed to be differ-
ent between the two images and implied land conversion. On the
other hand, two common kinds of change, which were not of
interest, were also observed: (a) small ground areas occluded by
shadow and (b) distortion effects due to steep slope. Concerning
the latter, the steep slope exclusion processing stage (Section 2.1.3)
is designed to exclude steep slope areas from detecting changes. To
evaluate the effectiveness of this stage in rejecting false changes,
the proposed change detection methodology was repeated without

Fig. 9. The potential change percentage criterion. The contours encircle homogeneous regions, while the parts with the line pattern correspond to the intersection with PCCk.
On the left, the intersection is covering a large part of the RegUAV and it should be accepted as change. On the right, the respective area is small compared to the total area of
RegUAV , it is regarded as an unimportant difference and is therefore rejected.
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steep slope exclusion for the second image of the Samaria dataset
where this effect was evident in a large part of it.

The proposed CD methodology was implemented in MATLAB.
The experiments were conducted using a PC of 64-bit i5
3.10 GHz processor and of 16 GB RAM.

3.2.2. Evaluating robustness to the misregistration errors
To assess the robustness of our methodology to misregistration

errors, we simulated misregistration errors in a way similar to pre-
vious works (Bovolo et al., 2009; Chen et al., 2014; Dai and
Khorram, 1998; Townshend et al., 1992; Wang and Ellis, 2005)

Fig. 10. The area of the case study of (a) Markopoulo and (b) Samaria datasets. In the satellite images shown on the left, in (a) the circle indicates the spots where the UAV
images were acquired, while in (b) the polygons define the footprint of the two UAV images. On the right, couples of 1000 � 1000 pixel cropped image segments from one of
the UAV images (top) and the satellite image (bottom) are shown.
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using the dataset from site Samaria; after control points have been
acquired and the UAV image has been ortho-rectified (see Sec-
tion 2.1.1), the satellite image is slid by increments of 0.2 pixels
in both axes, before the proper part is cut. In other words, a new
Im0sat image is produced, where ðx0; y0Þ pixel coordinates correspond
to ðxþ Dx; yþ DyÞ pixel coordinates in Imsat , where
Dx ¼ kx � 0:2; Dy ¼ ky � 0:2 and kx; ky ¼ 0;1; . . . ;35 (see also
Fig. 11). When either offset is not an integer number, the intensity
values in each channel of the satellite image are calculated via

bilinear interpolation. Then, Im0sat is provided as input to the
change detection method instead of Imsat . At this point, we should
note that the interpolation increases correlation between neigh-
boring pixels, which was regarded as an additional factor of noise
between the two images.

This process is repeated for descriptor search windows Wij of
different sizes by setting window sizes to 3� 3 ð	1 pixelÞ,
7� 7 ð	3 pixelsÞ, 11� 11 ð	5 pixelsÞ and 15� 15 ð	7 pixelsÞ
(see Section 2.2.2). This way, we observe how the choice of the
window size affects the quality of difference image and the consis-
tency in detecting changes.

3.2.3. Accuracy assessment
Let D0 be the generated difference image and D0

th the thresh-
olded binary image at misregistration offset ðDx;DyÞ, and D and
Dth the respective images at zero misregistration (these two will
be referred to as baseline images). In order to assess the effect of
misregistration, the following measures concerning the difference
images are calculated.

i. Normalized mean square error:

NMSE ¼ 1
jMj

X
ðx;yÞ2M

ðD0
x;y � Dx;yÞ2

D2
x;y

ð10Þ

where M is the set of all pixels ðx; yÞ where differences are
evaluated (pixels indicated by the slope mask are excluded,
see Section 2.1.3).

ii. Correlation coefficient distance:

CC ¼ 1� 1
rDrD0

� 1
jMj � 1

X
ðx;yÞ2M

ðDx;y � lDÞðD0
x;y � lD0 Þ ð11Þ

Table 2
The properties of the images used in the experiment.

Site Type of
image

Image resolution
(pixels)

Ground sampling distance
(m)

Area of coverage
(km2)

Date and time of
acquisition

Height of acquisition (approx.)
(m)

Markopoulo Satellite 14,031 � 13,891 0.41 32.76 18/6/2015 midday –
DTM 1770 � 2160 5 3.82 – –
UAV 1920 � 1080 0.03–0.05 0.005184 26/5/2015 morning 100–130

Samaria Satellite 10,443 � 9667 0.5 25.24 14/9/2013 morning –
DTM 2562 � 1398 5 89.54 – –
UAV 6000 � 4000 0.1 0.24 14/8/2013 morning 650

Table 3
List of user defined parameters and their values used in the experiment.

Description Variable Value

Extracting potential change components
Search window edge length (in pixels) w 11
Minimum PCC size (in pixels) N1 ðN0

1Þ 20 (5)

Generating region map
Region growing: color criterion for ‘‘bare ground” and ‘‘high saturation” classes respectively d1; d

0
1 0.1, 0.15 (Markopoulo)

0.1, 0.25 (Samaria)

Region growing: percentage of maximum gradient magnitude in SegUAV p1 0.7

Region growing: additive size for SegUAV (pixels) n1 10

Region merging: region similarity (see Appendix A) d2; d
0
2 0.1, 0.15

Region merging: region overlay percentage p3 0.7

Evaluating regions

Additive size for Segsat (pixels) n2 100

Additive size for Segobj (pixels) n3 4

Minimum change size (pixels) N2 5
Minimum change percentage p2 0.33
Maximum correlation c 0.75
Object centroid to maximum correlation point distance q 10

Fig. 11. The same translation is applied to every pixel as misregistration is
simulated.
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where rD;rD0 are the standard deviations of difference values in D
and D0 and lD;lD0 their respective mean values.

In addition, we evaluate the binary images from which PCCk are
extracted. This is done via the following steps:

1. Generating the intersection image as D\ ¼ D0
th \ Dth. This image

contains the true positive components that exist in both Dx;Dy
and zero misregistration offsets.

2. Performing morphological opening by reconstruction (Gonzalez
et al., 2002) of D\ under the D0

th image. This is done to recover
any component that is not formed exactly in the same shape
as in the baseline binary image. In this way, a single baseline
component is reconstructed, which may have been split into
two components at ðDx;DyÞ misregistration. The same way,
the merging of two baseline components is corrected.

3. Extracting components in Dth;D
0
th and D\ and computing their

cardinalities, as jDthj; jD0
thj and jD\j respectively.

Then, the following measures are calculated.

iii. Precision/False Discovery Rate (FDR):

Precision ¼ jD\j
jD0

thj
; FDR ¼ jD0

thj � jD\j
jD0

thj
¼ 1� Precision ð12Þ

iv. Recall/False Negative Rate (FNR):

Recall ¼ jD\j
jDthj ; FNR ¼ jDthj � jD\j

jDthj ¼ 1� Recall ð13Þ

v. Overall Increase Percentage (OIP):

OIP ¼ jD0
thj � jDthj
jDthj ð14Þ

In words, Precisionmeasures how many of the detected changes
correspond to true changes, Recall measures how many true
changes have been detected, while their complementary measures
FDR and FNR, respectively, are self-explained. Finally, OIP measures
the relative increase in detected changes.

4. Results and discussion

In the sequel, first, the influence of the various stages of the pro-
posed methodology in the formation of the final outcome, when it
is applied on the specific datasets described before, is shown. Then,
the immunity of the methodology to misregistration is discussed in
detail. Also, ways of modification of the proposed methodology, in
order to work with multispectral data are proposed. Finally, com-
putational complexity issues are considered, showing that the pro-
posed methodology is an effective algorithm for surveillance
applications.

4.1. Effectiveness of the methodology

First, the processing stage of image registration is discussed.
The SIFT algorithm found keypoints in the cropped reference satel-
lite image and in each of the original UAV images. A small percent-
age of them initially matched in pairs and the RANSAC method
then discarded some of them, providing the final matches that
are used as ground control points (GCPs) for the images. The num-
bers of extracted and matched keypoints are shown in Table 4. It is
easily noticed that the number of GCPs for the Markopoulo dataset
is by far smaller than the respective for the Samaria dataset, which
is mainly due to the small area that is covered in the UAV images.
The disadvantage of a small area of coverage is that it provides less

keypoints, making it less likely to extract GCPs that are evenly dis-
tributed on the image and thus not bringing enough statistical
information to generate the ortho-projection of the UAV image.
In addition, large homogeneous segments, which produce no key-
points, are expected to cover a large portion of the image and have
a larger effect on the registration. At this point we note that due to
these reasons, the registration failed in one of the UAV images in
Markopoulo dataset as GCPs could not be extracted, and no CD
could be performed for it. Also, for the Markopoulo dataset the
Least Squares model only contained exterior orientation parame-
ters; when including the interior parameters the model was unsta-
ble due to the fact that a small number of GCPs was extracted.
Therefore, the UAV should fly so that to acquire images of signifi-
cant footprint size (Fan et al., 2010). The Markopoulo dataset is
presented here as a marginal case, meaning that images of smaller
footprint might not be automatically registered. We should note
finally that for greater accuracy, Direct Linear Transformation
(Abdel-Aziz and Karara, 1971) could be enforced. However, this
was not necessary for our methodology since it makes up for any
misregistration errors as it has been described previously.

In Table 5, the results from the photogrammetric resection are
presented. We note that the resulting sigma are higher than the
expected sigma from a strict photogrammetric ortho-image, which
results in misregistration between the satellite image and the gen-
erated ortho-image. However, this kind of errors was expected
given the available dataset but they are not a restriction for the
purpose of this application and are treated properly by the steep
slope exclusion, the pixel descriptor vectors and the change evalu-
ation stages.

In the following, the steps concerning the CD are discussed. An
example of the difference image D is shown in Fig. 12. Bright pixels
represent high difference values, conversely for dark pixels. The
integration of neighboring pixels correlated their difference values
and suppressed the ‘‘salt and pepper” noise. In fact, the difference
images are relatively smooth, even in textured areas; the difference
values in these areas are clearly higher, but significant differences
are found only in groups of several pixels. The stage of extracting
potential change components finally discarded the noise in D from
further processing. The thresholding method filtered out the

Table 4
The number of the keypoints that were extracted and matched between the satellite
and the UAV images. For the Samaria dataset, a rounded approximation is provided
since these numbers were not much different for the two images.

Satellite
keypoints

UAV keypoints Initial matches GCPs

Markopoulo dataset
Mean (std) 1092.3 (481.5) 462 (152.6) 54.1 (26) 26.8 (10)
Range 307–1678 271–711 16–93 15–46

Samaria dataset
12,800 3500 1200 780

Table 5
Photogrammetric resection results for each UAV image.

r0 (pix) X0 (m) Y0 (m) Z0 (m) x (deg) u (deg) j (deg)

Markopoulo
dataset

±1.44 ±2.33 ±1.33 ±0.34 ±0.74 ±1.33 ±0.15
±1.73 ±2.97 ±1.5 ±0.47 ±0.9 ±1.86 ±0.37
±1.27 ±2.74 ±2.19 ±0.94 ±0.85 ±1.06 ±0.22
±3.57 ±11.8 ±5.93 ±1.74 ±1.71 ±3.43 ±0.74
±2.24 ±11.12 ±4.48 ±1.42 ±1.51 ±3.83 ±0.32
±1.99 ±3.69 ±4.06 ±3.28 ±1.57 ±1.57 ±0.52
±1.65 ±2 ±1.57 ±0.73 ±0.53 ±0.68 ±0.15

Samaria dataset ±0.8 ±0.88 ±0.94 ±4.94 ±0.05 ±0.04 ±0.01
±1.3 ±0.71 ±1.14 ±4.12 ±0.11 ±0.09 ±0.02
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majority of pixels and the extraction of connected components
highlighted large groups of pixels, which are of great importance.
The resulting PCC’s are also shown in Fig. 12.

The regions that were defined by the SRG algorithm with the
help of the initial global segmentation step correspond to objects
(such as the cars, trees and the roof of the refuge), road segments,
various bare ground areas, and shadow components. The vast
majority of the regions in both datasets are properly defined,
showing the robustness of the Region Map Generation stage. More-
over, the evaluation criteria rejected many regions as false changes.
Many of them were rejected by the area criterion, including a large
number of shadows that are cast by trees; a shadow component
grew into a shadow-plus-tree region, which was rejected since
the shadow part of the region is small compared to the tree part
of the region. A number of changes were also rejected by template
matching. An illustrative example of this case is shown in Fig. 13,
which is taken from Samaria dataset. The bushes are clearly
depicted in ImUAV , but not in Imsat . The spectral and gradient values
are different for the pixels that belong to the bushes and they are
signified as potential change components. However, the correla-
tions indicated that the image segments were similar and, despite
the misleading difference, there exists no true change. Another
example, which belongs to the Markopoulo dataset, is shown in
Fig. 14, in the top right pair of images. In this example, a set of
metal sheets are clearly depicted in both images, but there is a

slight color difference due to the sensitivity of the satellite sensor,
as well as evident misregistration errors. Even so, the template
matching in a short search range produced high correlation and
this object was finally rejected.

However, there were a few cases of objects undersegmentation
that were observed in the Markopoulo dataset that corresponded
mainly to objects whose spectral intensity values were not much
different from their surrounding elements, such as white cars
and the bus compared to the tarmac, or dark colored cars that were
parked near trees. To avoid this, a lower threshold for the color dis-
tance parameters of the SRG algorithm, namely d1; d

0
1, is used. A

few cases of oversegmentation were also observed in white cars,
because their windshield is seen as black and it was grown as a dif-
ferent region, but most of them (7 out of 9) were still detected as
change with the help of their shadow.

On the whole, the proposed methodology succeeded in detect-
ing most of the cars in the Markopoulo dataset (31 out of 33), the
bus and the bus remnants, but only one of the motorcycles was
detected because they were in general not large enough to be
accepted by the evaluation criteria. In addition, it revealed some
additional changes outside the road and the parking area which
belong to trees and bare ground segments. A total of 82 changes
were detected in the seven images that were used for CD, 53 of
which were verified as changes via manual inspection. The rest
of the changes (false positives) were in fact natural changes but

Fig. 12. The difference image D (bottom left) is calculated for the two images at the top. D is thresholded and potential change components are extracted from the binary
image Dth (bottom right). The images belong to the Samaria dataset.
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they were not of interest and they would only be rejected via man-
ual inspection. Some examples of the changes that are reported are
shown in Fig. 14.

As for the Samaria dataset, the manual inspection of the images
revealed that the factors that are responsible for false changes pre-
vail over the true changes that exist in the images. Shadow compo-
nents appear in many occasions and they are cast in different sides
of objects because the UAV and satellite images have been acquired
at different times in the day. In addition, some parts of the second
UAV image (at the edge of the gorge) have been severely distorted.
This is the reason for choosing these images in first place, i.e. to test
the proposed methodology on extremely difficult cases. The num-
ber of PCC’s that were extracted is still high, as 119 and 182

components were extracted from the two images, but this number
was reduced to 21 and 87 regions respectively that were accepted
as changes, after the Region Map Generation and Change
Evaluation processing stages.

The proposed methodology succeeded in detecting almost all of
the manually highlighted changes, 2/3 in the first set of images and
13/15 in the second one. The rest of the changes which were high-
lighted by the proposed methodology were mainly regions which
were partially occluded by shadow in either ImUAV or Imsat . Concern-
ing the second image of the dataset, almost half of the changes
detected, including the missed ones (false negatives), were found
in the gorge area (see also Fig. 15). They corresponded to regions
which were either distorted due to the viewing angle in relation

Fig. 13. The effectiveness of the evaluation criteria in rejecting false changes which arise due to the difference in image sharpness between ImUAV (left) and Imsat (right). The
PCC’s (marked on the left image) were refined via the SRG algorithm into RegUAV ’s. The evaluation criteria help in rejecting many homogeneous regions as no change; finally,
the rest of them are confirmed as changes (marked on the right image).

Fig. 14. Some of the changes that were detected in the Markopoulo dataset are drawn in ImUAV (the image on the left of each pair) while their contours are plotted in the
respective places in Imsat (on the right). Dark contours are used when necessary to enhance contrast.
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to the low resolution of the DTM or occluded by shadow.We should
note that the slope gradient in these distorted regions was not high
enough and they survived the threshold that was set to construct
the slope mask. However, the largest part of the distorted areas
was masked out successfully. When the change detection method-
ologywas performedwithout the slope exclusion stage, the number
of detected changes rose to 106 for the second set of images while
the processing time quadrupled. At the same time, the true changes
percentage decreased to 8/15. This is due to the fact that the dis-
torted regions were responsible for great difference values and they
were taken into account at the expense of other changes.

4.2. Robustness against misregistration errors

Fig. 16 shows the way NMSE grows as larger misregistration off-
sets ðDx;DyÞ are simulated, for different sizes of Wij search win-
dows. Clearly, when larger windows are used, NMSE grows in a
much slower rate. This is because, as the search is performed for
a larger area, the homologous pixel may still be found even if it
is misplaced by many pixels, until it is finally out of reach. In large
window sizes (11� 11 and 15� 15), we also observe how the
interpolation affects the quality of the satellite image, as it was
previously mentioned; since pixel intensity values are interpo-
lated, correlation between neighboring pixels is increased, thus
the misregistered image is a smoothed version of the original satel-
lite image. This way, additional errors are introduced in the
descriptor elements, producing slightly greater difference values.
This is not the case when integer values are used for misregistra-
tion offsets. As a consequence, in this case, the difference image
D0 is more similar to the baseline image, resulting thus in small
‘‘holes” in the NMSE surface. Finally, we observe that the NMSE val-
ues are larger along Dx axis, which is probably due to the vertical
orientation of ImUAV . In the same way, Fig. 17 shows the CC dis-
tance, supporting further that, when large windows are used, the
difference image D0 is similar to D even for large ðDx;DyÞ offsets.

The similarity measures concerning the binary images evaluate
the robustness of the overall procedure of extracting potential

change components in the presence of misregistration. This evalu-
ation is performed in a way similar as performed by Dai and
Khorram (1998), where a pixel-based change detection method is
used in medium ground resolution images. Figs. 18 and 19 show
that, when a large Wij window is used, the methodology becomes
more robust to misregistration errors, considering the components
that are extracted. FDR increases in a slow rate, indicating that a
small number of false changes is introduced progressively. In the
same way, FNR increases in a slow rate as well, indicating that most
of the true PCC components at zero misregistration are still identi-
fied, despite the increase in misregistration length. In Fig. 20, their
respective complementary measures, Precision and Recall, are plot-
ted as a function of the misregistration length regardless of direc-
tion, by averaging the values of the offsets of the same length (for
example, all of ð5;0Þ; ð3;4Þ; ð4;3Þ and ð0;5Þ offsets introduce a total
misregistration length of 5 pixels). In these figures, the rate of
decrease is easily observed and can be characterized as linear,
excluding the abrupt drop within the first pixel of misregistration.
As a consequence, the accuracy in detecting true changes remains
high even for large misregistration errors, as indicated by an aver-
age Precision value of nearly 90% and 80% for 2 and 4 pixels respec-
tively for both large windows. In the same manner, the average
Recall is nearly 85% and 80% for 2 and 4 pixels respectively in the
case of a 11� 11 window and 90% and 80% for a 15� 15 window.
This is a significant improvement compared to the percentages
reported in Dai and Khorram (1998) where, even at a single pixel
misregistration, the Precision (true positive) percentage dropped
sharply. The medium sized window (7� 7) seems to produce sim-
ilar results (Precision ffi 85% at 2 pixels, >70% at 4 pixels and
FNR ffi 20% at 2 pixels, <30% at 4 pixels). However, when the small
window is used, Precision drops in a faster rate within the first
5 pixels of misregistration and stabilizes at 40% (5 pixels) to 30%
(10 pixels), while the FNR increases in a smoother way and reaches
25% at 2 pixels and 38% at 4 pixels. All things considered, the
potential change extraction approach does not require the image
registration procedure to be perfectly accurate, as it can compen-
sate for spurious differences.

Fig. 15. In (b) some of the changes that were detected in the Samaria dataset are drawn in ImUAV (the image on the left of each pair) while their contours are plotted in the
respective places in Imsat . Dark contours are used where necessary to enhance contrast. In (a) the position of these cropped parts are also indicated in the whole ImUAV . In the
second pair of images, some false changes have been introduced due to the viewing angle, in relation to the low resolution of the DTM.

A.L. Fytsilis et al. / ISPRS Journal of Photogrammetry and Remote Sensing 119 (2016) 165–186 179



Last but not least, Fig. 20 shows that the total number of poten-
tial change components may change as misregistration errors are
introduced. This change may be quite noticeable for large windows
(OIP ¼ 	20% of jDthj), but it is more significant for the smallest
window. This is clearly due to Rosin’s thresholding method, as it
determines a threshold by finding a characteristic curve point in
the pdf of the difference image rather than defining a priori the
amount of change between the two images.

4.3. Configuration and deployment aspects

This section discusses some aspects concerning the configura-
tion of the proposed methodology so that it can be used effectively
in surveillance applications.

An important aspect in the change detection problem under
study is the spectral information provided in the related images.
This information depends more on the sensor that is loaded on
the UAV platform and less on the reference image; as the design
of the UAV platform is more important due to restrictions such
as its total cost, the reference image can be selected later so that
it can be comparable to the images that will be produced by the
UAV sensor. In our case, the CD methodology was developed to
detect changes between RGB images, which is a cost-effective
choice and, in the same time, it is considered to be the simplest
case under which changes can be detected and validated automat-
ically by the processing stages described in Section 2. However, the
proposed methodology is not bounded to work only with RGB

images, but it can be extended in order to work with multispectral
images as well.

This can be accomplished as follows. If more spectral channels
are used, the color vector and the descriptor vector (Section 2.1.1)
for each pixel become extended (since the information in the addi-
tional bands for the current and its neighboring pixels are taken
into account). However, the remaining processing stages will
remain unaltered. One should be careful though while bringing
more channels into use, as some of them may be sensitive to fac-
tors that are responsible for false changes, and selecting the most
suitable ones (see for example in Bruzzone and Serpico (1997)
the use of spectral channels that give prominence to the changes
of interest and others that are sensitive to misregistration errors).
Another drawback would be that, as the descriptor vector becomes
extended, curse of dimensionality problems and additional compu-
tational complexity requirements arise, since the generation of the
difference image and the region growing and merging stages calcu-
late Euclidean distances of vectors, which is OðnÞ concerning the
number of spectral channels that are used and, thus, the length
of descriptor and color vectors of the pixels.

A second way which makes up for these drawbacks would be to
reduce the dimensionality of the spectral space by applying a
transformation method such as Principal Component Analysis
and then select a subset of principal components that contain most
of the information contained in the data. Then the whole proposed
methodology is applied on the images composed by the selected
principal components. However, the SRG should still be performed

Fig. 16. The NMSE plots for all misregistration offsets, when Wij of size 3� 3 (A), 7� 7 (B), 11� 11 (C) and 15� 15 (D) are used. The main figures are scaled to the maximum
NMSE value at 3� 3 window size, while the top left figures are scaled to their respective maximum values. In large windows, the small holes at integer offsets are an
indication of the interpolation.
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in the original multispectral images since in the transformed space
the texture of the resulting images is expected to change signifi-
cantly and the SRG algorithm might not be able to define objects
properly.

Apart from the above extensions, which mainly transform the
input given to the proposed methodology, the use of more spectral
channels could bring advantages to individual processing stages of
the methodology. For example, we could use more spectral chan-
nels for segmenting further the ImUAV in more than two target
classes. This knowledge can be useful first, in the region growing
and later in the evaluation of the resulting regions. For example,
NDVI can be used to extract vegetation and shadow components
which could not be separated clearly by using RGB images; then,
shadow components could be immediately rejected more
confidently.

It is important to mention here that it is required that the mul-
tispectral images to be compared to have the same spectral chan-
nels so that they are comparable, even if their sensitivity in these
channels is not the same (which was the case in our experiments).
However, in case one image contains a few channels more than the
other, the difference image generation stage (Section 2.2.1) can be
replaced by the Multivariate Alteration Detector method (Nielsen,
2007; Nielsen et al., 1998), which also makes up for the difference
in sensor gain and sensitivity. However, as this is a pure pixel-
based method, it is vulnerable to misregistration errors, which, in

our methodology, is treated by the descriptor vectors. Having this
in mind, the combination of the descriptor vector and the search
window could be replaced when not many false changes are
expected.

In addition, most of the parameters of the proposed methodol-
ogy control the post-processing (via the SRG algorithm) and the
evaluation of the changes. Some of them, for example the mini-
mum size N2 and the area percentage criteria have a direct physical
meaning and their values can be set according to the needs of the
application and the scale of the changes of interest. As for the
parameters of the SRG algorithm and the regions merging, they
need to be adjusted first according to an ortho-rectified UAV
image, so that the resulting regions are defined properly. Last but
not least, the size of the search window is probably the most cru-
cial parameter in the methodology, as it is related to the misregis-
tration errors. The accuracy of registration relies greatly upon the
accuracy and the density of the DTM, while the morphology of
the terrain is also important since rough terrains are prone to gen-
erating incorrect ortho-images. In our case, we have set empirically
the size of the window by inspecting carefully the misregistration
errors in both rough and smooth terrain in the set of images avail-
able, which is a practical and reliable solution. A more elegant one
would be to estimate the search range dynamically, but it requires
the modelling of the factors of misregistration errors, which is con-
sidered to be a very difficult task.

Fig. 17. The CC distance plots for all misregistration offsets, when Wij of size 3� 3 (A), 7� 7 (B), 11� 11 (C) and 15� 15 (D) are used. For large windows (C, D), extremely
high correlations are calculated for the difference images even for large misregistration offsets.
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However, once the parameters are set, they may never need to
be adjusted again, especially when the equipment and the acquisi-
tion conditions of the UAV images are the same. The regions are
also defined properly, with the help of the initial segmentation
result that is obtained via a non-parametric thresholding method
(Section 2.3.1). The same method is also used for the detection of
PCC’s, which are the first indications of changes. All things consid-
ered, the two datasets have been processed with the use of the
same values for the parameters, with the exception of one, which
supports further the claim that the proposed methodology is just
affected by the choice of their values.

Finally, another important aspect for a system like the proposed
one is the processing time required. It is of vital importance for
surveillance applications to develop a procedure that completes
processing in (at least) near real time, meaning that the delay
introduced by the execution of the methodology is not significant,
so that the report of a change is produced fast and any intervention
is decided short after its detection. The proposed methodology was
designed to work in detail with the images, which is accomplished
via the generation of the region map, so that the evaluation of the
regions takes place. The region growing is a segmentation method
for defining objects accurately; in fact, similar SRG (Liu et al., 2015;
Wang et al., 2010) and merging (Zhang et al., 2014) algorithms
have been recently proposed that work well with VHR images.

However, region growing is a rather time consuming procedure.
To this end, since there is no need to segment the entire ImUAV into
regions, in the proposed methodology the region growing is per-
formed only on PCC’s, so that places of no importance are bypassed.
This helps in keeping the required processing time low (each image
required up to 20 s for the Markopoulo dataset and up to a couple
of minutes for the Samaria dataset), while this time varies accord-
ing to the number of PCC’s, since as more PCC’s are extracted, more
RegUAV ’s will be grown. This number can be affected by the follow-
ing parameters; (a) the minimum PCC size, N1, and (b) the size of
the search window Wij, w. If N1 is set to a larger value, more
PCC’s will be excluded from further processing. Concerning w,
although a large value would require slightly more time to produce
the difference image (its complexity is Oðw2Þ regarding the number
of descriptor distance values to be calculated for each pixel, but w
is expected to be small), it will help in rejecting differences that
arise due to misregistration errors. As a consequence, less PCC’s
are extracted (this is also shown in the small increase in OIP, see
Section 4.2), thus, the following processing stages (SRG, evaluation
of changes) require less time and the total processing time is
almost constant. This is illustrated in Fig. 21, where the time
required by the four processing stages, when different window
sizes of 7, 11 and 15 pixels are used, is displayed (the images of
Samaria are used in this example).

Fig. 18. The FDR values for all misregistration offsets, when Wij of size 3� 3 (A), 7� 7 (B), 11� 11 (C) and 15� 15 (D) are used. For small windows, the FDR increases more
quickly, which indicates that most of the potential changes detected are due to large misregistration errors (A, B). Larger windows help in rejecting them, despite
misregistration errors (C, D).
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5. Conclusions

The proposed methodology is the first one to detect changes
between an image taken from a VHR satellite sensor, which covers
a wide area of control and is used as reference of historical data,
and an image taken inside this area from a VHR UAV camera. The
main challenge in this problem is that misregistration errors are

more evident and affect greatly the accuracy of the change detec-
tion. Moreover, the images are taken from different sensors and
they are expected to differ in resolution and the level of detail in
picturing natural elements.

The processing stages of the proposed methodology (pre-
processing, extraction of potential change components, region
map generation and evaluation of homogeneous regions) were

Fig. 19. The FNR values for all misregistration offsets, when Wij of size 3� 3 (A), 7� 7 (B), 11� 11 (C) and 15� 15 (D) are used. For small windows, many original potential
changes are not detected anymore, because false potential change components are introduced (A, B). However, larger windows are more robust to misregistration errors, as
they help in retaining the original potential change components (C, D).

Fig. 20. Precision, Recall and OIP values as a function of the misregistration length. Values were calculated by averaging over the misregistration errors of the same length. For
the ease of presentation, a moving average filter was applied to the plots for misregistration errors greater than 1 pixel so that the trend of the curve is observed.
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designed so that it addresses many of the challenges encountered
in change detection problems. The use of simple pixel descriptors
and the search for homologous pixels in a small spatial neighbor-
hood compensates for unavoidable misregistration errors. At the
same time, it calculates an initial difference image from which
potential change components are extracted. The seeded region
growing algorithm defines homogeneous regions on the UAV
image, which are a refined version of potential change compo-
nents. The resulting regions are finally evaluated so that false
changes are rejected.

The accuracy in detecting changes and the robustness of the
proposed methodology against misregistration errors was
assessed via the use of two datasets of UAV images and associ-
ated satellite images from different areas, namely ‘‘Markopoulo
dataset” and ‘‘Samaria dataset”, and, additionally, via the
simulation of misregistration errors. The study areas exhibit
significantly different landscape conditions (topography, land
use–land cover), while the datasets contain UAV images of
different spatial resolution and footprint size. Specifically, the
Markopoulo dataset contains images of a small footprint which
makes their automatic registration difficult, if not impossible,
and also leads to large misregistration errors. Moreover, the
Samaria dataset was selected so that to represent challenges
such as image misregistration, image distortion and spectral
intensity differences to a great extent, in other words, bringing
many cases which would produce false changes. The methodol-
ogy detected successfully the vast majority of changes in the
two datasets, which proves that it performs adequately under
very different scenaria. Furthermore, the simulation of misregis-
tration errors showed that the pixel descriptors and the search
window prevent the difference image from being heavily
affected, even if large misregistration errors are introduced. Con-
cerning the potential change components, the precision and

recall measures are notably high. In other words, the vast major-
ity of the true potential change components are still extracted
and, in the same time, very few false ones are introduced.

Last but not least, the proposed methodology brings benefits to
the specific problem of timely wide area surveillance operations,
since (a) it automatically transforms the UAV images and registers
them on the reference satellite image, (b) it detects changes in near
real time and (c) it rejects as many false changes as possible in a
fully unsupervised way, under the assumption that the footprint
of the UAV images in not too small. Many of the changes which
were detected in our experiment were in fact changes that should
be alerted, while a few remained to be subject to re-evaluation by a
human expert. The above conclusions make evident that the pro-
posed methodology can be employed for surveillance applications,
it can be embedded in a chain of real time acquisition and near real
time processing and it can be used effectively to assist operations
of institutional surveillance agents.
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Appendix A

A.1. Region merging

For the sake of presentation convenience, the following defini-
tions are made.

Fig. 21. The individual times (in seconds) required for the four processing stages, while search windows of different sizes are applied, are summed up.
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� The similarity distance PD for two regions, Regi and Regj, is
defined as the Euclidean distance of their mean intensity values,
i.e.

PDðRegi;RegjÞ ¼ kli � ljk2 ðA:1Þ
� The similarity criterion PC for two regions, Regi and Regj, with
areas of ARegi and ARegj respectively, is defined as
s PDðRegi;RegjÞ < d2, or, if this is not true,
s PDðRegi;RegjÞ < d02, where d02 > d2 and ARegi\Regj=minðARegi ;

ARegj Þ > p3,

where d2; d
0
2 and p3 are user defined parameters. The second one

indicates that although the regions may not be close enough
regarding color intensity values, the overlay percentage may be
high and, in this case, they should be merged.

Therefore, we write PCðRegi;RegjÞ ¼ true ðor falseÞ if Regi is
similar (or dissimilar) to Regj.

� ID is the set of unique identification integer numbers that have
been attributed to registered regions.

� RegUAV is a new unregistered region.
� Regid is an already registered region with identification number
id 2 ID.

� The set Y , that contains the ids of the registered regions that
intersect with RegUAV , each denoted by Regy, is defined as

Y ¼ y : y 2 ID;Regy \ RegUAV – £
n o

ðA:2Þ

� The set F, that contains the ids of the registered regions that
intersect with RegUAV and are dissimilar to it, each denoted by
Regf , is defined as

F ¼ f : f 2 Y; PCðRegf ;Reg
UAV Þ ¼ false

n o
ðA:3Þ

� The set T , that contains the ids of the registered regions that
intersect with RegUAV and are similar to it, each denoted by
Regt , is defined as

T ¼ t : t 2 Y ; PCðRegt;Reg
UAV Þ ¼ true

n o
ðA:4Þ

It is obvious that T \ F ¼ £ and T [ F ¼ Y .
In the simplest case, where there is no intersection between

RegUAV and any of the Regid’s, Reg
UAV acquires id ¼ maxfIDg þ 1,

which is registered in region map and we update the ID set as
ID ¼ ID [ fidg.

In case where RegUAV intersects with one or more Regy’s, the lat-
ter are grouped into Regf and Regt . Firstly, the screening procedure

(see Section 2.3.2) is performed on the pixels shared by RegUAV and
each of the Regf separately. In this way, RegUAV discards all of its
pixels that should be registered to another region, before proceed-
ing to merging. Then, a merging of the possibly reduced RegUAV

with each of the Regt regions is examined. The number of them,
jTj, defines the complexity of the merging procedure, and the fol-
lowing cases are considered.

� jTj ¼ 0 (there is not any Regt). In this case, RegUAV acquires a new
id and it is registered on the region map.

� jTj ¼ 1 (the exists exactly one Regt). In this case, the regions are
merged under the existing id ¼ t, i.e., Regt ¼ Regt [ RegUAV , and
Regt is augmented.

� jTj > 1 (there exist more than one Regt ’s). This is the most com-
plicated case, as RegUAV may be merged with more than one
Regt ’s which were not connected before. The new region will
replace more than one existing regions and the region map
and the set IDmust be updated upon their deregistration. Merg-
ing of multiple regions is performed by defining a temporary
region Regt0 ¼ RegUAV and augmenting it sequentially with
neighboring similar regions Regt ’s. The region is accompanied
by a temporary set T 0, which is used to keep note of regions
Regt that will be merged in order to form Regt0 (see also
Fig. 6). The merging procedure is described in algorithmic form
as shown in Table 6.

We explain that:

� The Regid’s are initially sorted so that the merging starts from
the more to the least similar one.

� The criterion PC is re-evaluated for each one of the remaining
Regt ’s with the Regt0 as it has been currently formed. The neces-
sity of this step is justified since every time the Regt0 merges
with one more Regt or may dispose of a few pixels, its mean
value is updated. Then, as wemove to the next one, the criterion
may not be satisfied anymore. Note that for computational rea-
sons, the sorting step is not applied after each re-evaluation of
PC .

� The id to be attributed to the region is selected as id ¼ minðT 0Þ
from the set T and the rest of the members become temporarily
unused. These gaps in ID are filled by shifting the id’s in the
region map, and the ones that are then unused are deleted
from ID.
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Table 6
The algorithm for merging multiple regions.

Set Regt0 ¼ RegUAV
Set T 0 ¼ £

Sort Regt ’s in ascending order according to PDðRegt ;RegUAV Þ
for each Regt examined in this order
if PCðRegt ;Regt0 Þ ¼ true

Regt0 ¼ Reg0t [ Regt
T 0 ¼ T 0 [ ftg

else
Perform screening procedure between Regt0 and Regt

end if
update the mean value of Regt0

end for
id ¼ minðT 0Þ
Register Regt0 with id
Renumber accordingly the ids in the region map
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