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a  b  s  t  r  a  c  t

In this  study,  the  potential  of  EO-1  Advanced  Land  Imager  (ALI)  radiometer  for land  cover  and  especially
burnt  area  mapping  from  a single  image  analysis  is investigated.  Co-orbital  imagery  from  the  Landsat  The-
matic Mapper  (TM)  was  also  utilised  for comparison  purposes.  Both  images  were  acquired  shortly  after
the suppression  of a fire  occurred  during  the  summer  of  2009  North-East  of  Athens,  the  capital  of Greece.
The  Maximum  Likelihood  (ML),  Artificial  Neural  Networks  (ANNs)  and Support  Vector  Machines  (SVMs)
classifiers  were  parameterised  and  subsequently  applied  to the  acquired  satellite  datasets.  Evaluation  of
the land  use/cover  mapping  accuracy  was  based  on  the error matrix  statistics.  Also,  the  McNemar  test  was
used  to  evaluate  the  statistical  significance  of  the  differences  between  the  approaches  tested.  Derived
burnt  area  estimates  were  validated  against  the  operationally  deployed  Services  and  Applications  For
Emergency  Response  (SAFER)  Burnt  Scar  Mapping  service.

All  classifiers  applied  to  either  ALI  or  TM  imagery  proved  flexible  enough  to map  land  cover  and  also  to
extract  the  burnt  area  from  other  land  surface  types.  The  highest  total  classification  accuracy  and  burnt
area  detection  capability  was  returned  from  the  application  of  SVMs  to ALI  data.  This  was  due  to the  SVMs
ability  to identify  an  optimal  separating  hyperplane  for best  classes’  separation  that  was  able  to better
utilise  ALI’s  advanced  technological  characteristics  in  comparison  to those  of  TM  sensor.  This  study  is  to
our  knowledge  the  first  of  its kind,  effectively  demonstrating  the  benefits  of  the combined  application
of  SVMs  to ALI  data  further  implying  that  ALI  technology  may  prove  highly  valuable  in  mapping  burnt
areas  and  land  use/cover  if it is  incorporated  into  the development  of  Landsat  8  mission,  planned  to  be
launched  in  the  coming  years.

©  2012  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Land cover is a fundamental variable of the Earth’s system
strongly connected with many parts of the human and physi-
cal environment. Changes in land cover dynamics is regarded as
the most important variable of global change affecting ecological
systems (Otukei and Blaschke, 2010). Wildland fires are a major
ecological disturbance factor of natural ecosystems threatening
environmental systems and infrastructure worldwide, affecting the
distribution of land use and land cover (e.g. FAO, 2001; Petropoulos
et al., 2011a).  Those have a major impact to the economy of an
affected country, influencing also the broader economies through
the destruction occurred in marketable assets (Sifakis et al., 2011).
Thus, the extraction of information on past fire events including
accurate mapping of burnt areas is underlined as a matter of key
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importance and priority for future attention by both environmen-
tal scientists and policy makers (Giglio et al., 2006; Kontoes et al.,
2009).

The progress in earth observation technology of the past three
decades or so has allowed monitoring from space the landscape
destruction caused by wildland fires. Several algorithms applied to
satellite imagery acquired at various spatial, spectral and tempo-
ral resolutions have shown promise in delineating the burnt areas
(e.g. Dixon and Candade, 2008; Petropoulos et al., 2010a,b). Satellite
image classification is generally regarded as the most commonly
used approach in deriving information on the pattern and the spa-
tial distribution of land cover and of its changes (Mathur and Foody,
2008). It is also one of the most widely used approaches in map-
ping burnt areas (Kokaly et al., 2007; Petropoulos et al., 2011a).
Numerous image classifiers have been developed, a recent com-
prehensive review of which can be found in Lu and Weng (2007).
The selection of the suitable classifier as well as of the appropriate
spectral bands- original or derived- are both crucial for the success
of the classification. Limitations of previous generation satellite
sensors with respect to their suitability for burnt area mapping
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have been extensively discussed and identified (e.g. Quintano et al.,
2006).

At present we are in an era characterized by the development of
new spaceborne sensing. Those aim to replace existing radiometers
such of Landsat series, yet ensuring the continuity of observations
so that their archive can be maintained (Thenkabail et al., 2004).
The need to evaluate specifically the capability of new generation
remote sensing sensors combined with contemporary techniques
with respect to land use and land cover and/or burnt area map-
ping has been pointed out as a direction of critical importance and
priority (Silva et al., 2005; Roy and Boschetti, 2009). In this con-
text, the Earth Observing-1 (EO-1) mission launched in November
2000 under United States National Aeronautics and Space Admin-
istration (NASA’s) New Millennium Program, aims at developing
and validating instruments and technologies for space-based Earth
observation with unique spatial, spectral and temporal character-
istics not previously available (Pu et al., 2005). The Advanced Land
Imager (ALI) is one of three operational instruments on board the
EO-1 platform (Ungar et al., 2003). ALI is a multispectral sensor
included in EO-1 with the intention to be used specifically in eval-
uating new technologies for the development of the future Landsat
8.

The use of ALI data has so far been explored in various appli-
cations related to geology (Hubbard and Crowley, 2005; Deller,
2006), vegetation mapping (Pimstein et al., 2009; Helmer et al.,
2010) as well as lake water dissolved organic matter (Chen et al.,
2009). Many investigators have also examined ALI’s potential com-
parative to that of Landsat TM/ETM+ (e.g. Thenkabail et al., 2004;
Neuenschwander et al., 2005; Deller, 2006; Helmer et al., 2010).
However, to our knowledge, not adequate attention seems to have
been paid in examining ALI’s capability in land cover mapping with
emphasis to burnt area delineation, particularly in comparison to
other sensors. Given that Landsat TM/ETM+ performance in both
land cover and burnt area mapping has been extensively examined
using diverse classification approaches (e.g. Dixon and Candade,
2008; Petropoulos et al., 2010a,b), it would be of great interest to
examine ALI’s potential versus TM/ETM+ for this purpose. Under-
standably, such a study should be performed in a Mediterranean
setting, a fire-prone region (Castillejo-Gonzalez et al., 2009).

In this context, the objective of our study was to identify the
capability of ALI to land use/cover and burnt area mapping, based
on a single image and a range of pixel-based classification tech-
niques. An additional objective was to evaluate the contribution
of the advanced technology incorporated in ALI, namely the role
of additional bands as well as the higher signal to noise ratio and
increased dynamic range, versus the traditionally used TM imagery
in land use/cover and burnt areas mapping. As a case study we used
a destructive Mediterranean fire that broke out in August 2009
close to Athens, the capital of Greece, for which near co-orbital
ALI and TM images acquired shortly after the fire suppression were
available.

2. Experimental set up

2.1. Study site

The study site comprises the area of eastern Attica, located
approximately 30 km north-east from the city of Athens. The
surface area covered is approximately 220 km2, extending approx-
imately from 23◦2′ to 26◦1′ East, and from 36◦4′ to 38◦4′ North.
The region is representative of typical Mediterranean conditions
in terms of both landscape structure and land surface cover
variation. The terrain varies highly from sea level to approxi-
mately 800 m,  whereas the vegetation of the area also varies
with altitude. The climate of the area is typical Mediterranean,

Table 1
Wavebands and spatial resolution of the ALI and Landsat TM/ETM.

Landsat TM/ETM+ EO-1 ALI

Band Range (�m) Band Range (�m)

1p (30 m) 0.432–0.451
1  (30 m)  0.450–0.520 1 (30 m) 0.458–0.511
2  (30 m) 0.530–0.610 2 (30 m) 0.532–0.602
3  (30 m) 0.630–0.690 3 (30 m) 0.632–0.688
4  (30 m) 0.780–0.900 4 (30 m) 0.775–0.805

4p (30 m) 0.845–0.888
5p (30 m) 1.200–1.288

5  (30 m)  1.550–1.750 5 (30 m) 1.554–1.725
7  (30 m) 2.090–2.350 7 (30 m) 2.090–2.362
Pan (15 m)a 0.520–0.900 Pan (10 m) 0.480–0.690

a Pan band is not available on the TM sensor. Also the Landsat TM/ETM+ thermal
band has not been included in the table.

characterised by hot, dry summers and cool, wet  winters, with
a long dry period starting in April and lasting until September.
At lower elevations, land is covered mainly by schlerophyllous
vegetation, sparse vegetation areas and some agricultural land.
At higher altitudes, areas are covered mainly by forest of differ-
ent types as well as transitional woodland/scrubland areas. The
study site experienced severe damage from a wildfire outbreak on
August 21st, 2009, which was  suppressed approximately 3 days
later.

2.2. Datasets

ALI is a multispectral sensor onboard EO-1 that follows a sun-
synchronous, near-polar orbit with a nominal altitude of 705 km
at the equator. ALI acquires data covering a ground swath width
of 185 km.  The primary characteristics of ALI reflective bands con-
trasted with those from Landsat TM/ETM+ are listed in Table 1. In
comparison to Landsat TM/ETM+, ALI sensor has three additional
bands at 30 m spatial resolution and also one panchromatic band at
a spatial resolution of 10 m.  Furthermore, in comparison to Landsat
TM/ETM+, ALI has an increased dynamic range (12 bit vs. 8 bit) and
an improved signal-to-noise ratio (SNR). The prototype ALI instru-
ment was found to exceed ETM+ SNR by a factor of 4–8 (CEOS,
2012). Because ALI was  developed as a technology demonstration
instrument and not as an operational land imager, ALI observations
are mission-objected and programmed.

In our study, near co-orbital satellite imagery from Land-
sat TM (path: 182, row: 34) and ALI (path: 183, row: 33) over
our study region was  obtained. Images were acquired at no
cost from the United States Geological Survey (USGS) archive
(http://glovis.usgs.gov/). The acquisition dates of the TM and ALI
images were September 3rd, 2009 and August 30th, 2009, respec-
tively. The TM image was acquired as a full long scene in GeoTiff
format at Level 1G, meaning that it was radiometrically, geomet-
rically and terrain corrected, the latter meaning that a Digital
Elevation Model (DEM) has been employed for topographic accu-
racy (USGS web site). The ALI image was  also received as a full long
scene in GeoTIFF format and at L1GST processing level, meaning
that it was  radiometrically corrected, geometrically resampled and
registered to a geographic map  projection image with elevation
correction applied to the 16-bit integer radiance values. The ALI
image was  acquired georeferenced to a UTM 34N projection with a
WGS84 ellipsoid, whereas the TM image was provided in UTM 35N
projection and WGS84 ellipsoid.

In addition to the above datasets, a burnt area map
generated in the framework of the Burnt Scar Mapping
service (BSM-1) of the Services and Applications For Emer-
gency Response (SAFER) European Commission (EC) project
(http://www.emergencyresponse.eu) was  used for validation
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purposes. SAFER is a Research & Development Project aimed at
developing in Europe standardized space-based geo-information
products, strengthening Europe’s capacity to respond to emer-
gency situations. The BSM vector polygon used in our study, was
generated by the National Observatory of Athens (NOA) project
partner after applying the so-called BSM NOA processing algo-
rithm (Kontoes et al., 2009). This is a standardised and validated
fixed thresholding approach that provided the appropriate accu-
racy of the delivered burnt area mapping products (Kontoes et al.,
2009) currently being used operationally to accurately map  burnt
areas at European scale. The BSM-1 map  was generated using the
same Landsat TM image as the one used in this study and was
subsequently refined with a very high spatial resolution IKONOS
scene of August 26th, 2009.

3. Methodology

Land cover and burnt area mapping was performed by indepen-
dently applying the Maximum Likelihood (ML, e.g. Richards, 1999),
Support Vector Machines (SVMs, Vapnik, 1995) and Artificial Neu-
ral Networks (ANNs, e.g. Haykin, 1994) pixel-based classifiers to
the ALI and TM images. An overview of the main image processing
steps applied is shown in Fig. 1, whilst a brief description of those
steps is provided in the following sections.

3.1. Pre-processing

ALI and TM images were imported to ENVI software plat-
form (ITT Visual Information Solutions SA) and Digital Numbers
(DNs) were converted to radiance units following the proce-
dure described in the Landsat 7 Science data users handbook
for ETM+, and as outlined within Mendenhall et al. (1999) for
ALI. Subsequently, the image bands from each sensor were layer
stacked to form a single image file corresponding to the imagery
acquired from each sensor. For consistency with ALI (Table 1),
Landsat TM thermal band was excluded from further analysis.
Next, image to image co-registration was performed using the TM
image as reference. Subsequently, the two images were further
layer-stacked to form a single dataset, after masking out the non-
overlapping areas between the two images. To ensure consistency
with SAFER validation dataset, the non-commonly covered land
surface area was masked out from the SAFER burnt area vector
product. Geopositional accuracy fell within the sensor pixel range
(RMS ∼ 30 m),  which was considered satisfactory. Water masking
was then applied to the layer-stacked dataset, based on a single
image thresholding approach using TM band 1 (Kontoes et al.,
2009). Atmospheric correction was decided not to be performed,
following Datt et al. (2003) and Pengra et al. (2007) who reported
that it was not necessary to atmospherically correct image data
for a single observation. Furthermore, as the burnt area estimate
of SAFER had been derived from the analysis of the analysis of TM
imagery at L1T processing level, no further correction was  applied
to our TM and ALI images. This also ensured consistency in our
comparisons and guarantied the integrity and validity of our anal-
ysis. The pre-processed images were classified using the different
pixel-based classifiers, as will be described next.

3.2. Image classification

Supervised image classification using Maximum Likelihood
(ML), Support Vector Machines (SVMs) and Artificial Neural Net-
work (ANNs) methodologies was applied to ALI and TM images for
mapping land use/land cover and extracting burnt area. Bearing in
mind the differences in the operation between the three classifiers,
it deemed interesting to examine how their different properties

take advantage of the ALI’s improved instrument technology in
comparison to TM’s in mapping land use/cover and extracting the
burnt areas. This was  considered to be also particularly interesting
in the context of new technologies evaluation for the development
of the future Landsat 8 mission for which ALI has been specifically
developed.

Each of the selected classifiers was  subsequently parameterised
and then applied to the ALI and TM images following three steps.
Firstly, the classification key was  formulated, consisting of the
classes “agricultural areas”, “artificial surfaces”, “forests”, “semi-
natural vegetation” and “burnt area”. The decision to use this
classification scheme was  based primarily on photo-interpretation
of the ALI panchromatic imagery (10 m spatial resolution). Deci-
sion was also assisted by our familiarity with the study area
from previous work conducted in the same region (Petropoulos
et al., 2011a). Secondly, training pixels representative of each
class included in our classification scheme were collected from
the ALI and the TM images. Selection of the training sites was
guided by photo-interpretation of the ALI panchromatic imagery,
as well as targeted field visits conducted during September 2009.
Training pixels were determined carefully and were selected from
regions appearing homogeneous regions at the sensors’ observa-
tional scale. Approximately 115 pixels of each class included in
our classification scheme (a total of approximately 665 pixels)
were identified as training data. Evaluation of the suitability of
the selected training pixels was performed by examining their
statistical separability. This was also done in ENVI, by computing
both the Jeffries-Matusita and the Transformed Divergence sep-
arability indices (ENVI User’s Guide, 2008). A separability index
for all class pairs was reported as always higher than 1.24 and
1.84 for the TM and the ALI imagery respectively. Those results
suggested generally a very good separability between the com-
pared spectral pairs representing the different classes. Thirdly,
using the previously collected training points selected classifiers
were parameterised and implemented one by one to the ALI
and the TM images. To ensure consistency, the same training
points were used when each classifier was applied to the ALI
and TM images. Next, a brief explanation of the three algorithms
functionality and details concerning their parameterisation is pro-
vided.

3.2.1. Maximum Likelihood
Maximum likelihood classification assumes that the statistics

for each class in each band are normally distributed and calcu-
lates the probability that a given pixel belongs to a specific class.
ML estimates the means and variances of the classes directly from
the training data, and then those are used to be computed the
probabilities. ML  considers not only the mean or average values
in assigning classification, but also the variability of brightness val-
ues in each class. The maximum likelihood decision rule is based
on the probability that a pixel belongs to a particular class. If the
highest probability is smaller than a threshold specified, the image
pixel remains unclassified. In ENVI maximum likelihood classifica-
tion is implemented by calculating the discriminant functions for
each pixel in the image shown in Eq. (1),  below (ENVI User’s Guide,
2008):

gi(x) − ln p(ωi) − 1
2

ln
∣∣˙i

∣∣ − 1
2

(x − mi)
t˙−1

i
(x − mi), (1)

where i is the class; x is the n-dimensional data (where n is the
number of bands); p(wi) is the probability of class � occurs in the
image and is assumed the same for all classes;

∣∣Si

∣∣ is the deter-

minant of the covariance matrix of the data in class wi; S−1
i is its

inverse matrix; and mi is the mean vector.
The basic equation assumes that these probabilities are equal

for all classes, and that the input bands have normal distributions.
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Fig. 1. Flowchart of the overall methodology followed.

The maximum likelihood algorithm assumes that the histograms
of the bands of data have normal distributions. An important
advantage of this method in comparison to other parametric clas-
sifiers of its kind is that it provides an estimate of overlap areas
based on statistics. Other parametric classifiers (such as the par-
allelopiped) use only maximum and minimum pixel values to
classify image pixels. ML  has generally shown to provide high
classification accuracy results, as long as accurate training data
is provided (ENVI User’s Guide, 2008). In the present study, for
both the ALI and TM images, ML  was parameterised in ENVI using
all the training points selected previously (Section 3.2). A single
threshold value for all classes in the classification was set up, using
probability threshold value equal to zero, meaning that no pix-
els lower than this value are classified and also using as a data
scale factor one. The scale factor is a division factor used to con-
vert integer scaled reflectance or radiance data into floating-point
values.

3.2.2. Support Vector Machines
SVMs is a supervised machine learning technique that performs

classification based on the statistical learning theory. Briefly, for
the simple case of two classes separation, SVMs operation is based
on fitting a hyperplane that provides the best separation between
the two classes in a multidimensional feature space. This hyper-
plane forms essentially the decision surface on which the optimal
class separation takes place. Intuitively, the optimal hyperplane
is the one that maximizes the distance between the hyperplane
and the nearest positive and negative training example, called the
margin. Generally, the larger the margin, the lower is the gener-
alisation error of the classifier. From a given set of training data,
the optimization problem is solved to find the hyperplane that
leads to a sparse solution. Hence, only a subset of the training
samples, those that lie on the margin (called “support vectors”)
are used to define the hyperplane. Thus, often not all the obtain-
able training examples are used in the design of the separating
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hyperplane, and this is a key generalization feature of SVMs in
comparison to other non-parametric classifiers. In case of a non-
linearly separable input space, kernel function is often used to map
the non-linear correlations into a dimensional space. Commonly
used kernels include the polynomial, the radial basis function
(RBF) and the sigmoid kernels. A recent overview of remote sens-
ing applications using SVM was provided by Mountrakis et al.
(2011).

In the present study, multiclass SVMs pair-wise classification
strategy was implemented in ENVI. SVMs was applied at the origi-
nal spatial resolution of 30 m of each imagery acquired. In defining
the SVMs feature space all the sensor reflective bands after the end
of pre-processing were used (described in Section 3.1). Concerning
the kernel-specific parameterisation, also generally very little guid-
ance exists in the literature (e.g. Li and Liu, 2010). The RBF kernel
function was used for performing the pair-wise SVMs classification.
The rationale for selecting this kernel was guided by the fact that it
requires the definition of only a small amount of parameters to run
and has also shown to produce generally promising results in other
classification-related studies (e.g. Huang et al., 2008; Petropoulos
et al., 2011b).

RBF kernel was parameterised based on performing a number of
trials of parameters combinations, using classification accuracy as a
measure of quality. Such an approach has also been adopted in the
past in analogous studies of SVMs implementation (e.g. Kuemmerle
et al., 2009; Petropoulos et al., 2011b). In addition, suggestions
provided for the parameterization of these values from the ENVI
User’s Guide (2008) were also taken into account. SVMs was finally
implemented using the pre-processed images (Section 3.1). In each
classification performed, the � parameter was set to a value equal
to the inverse of the number of the spectral bands of the imagery
used each time (i.e. in our study to 0.111 and 0.167 for ALI and TM
respectively). The penalty parameter, which controls the trade-off
between allowing training errors and forcing rigid margins, was
set in to its maximum value (i.e. 100), as we were interested to
create the most accurate possible model. The pyramid parame-
ter was set to a value of zero, meaning that each image should
be processed at full resolution. Finally a classification probability
threshold of zero was applied forcing all image pixels to be clas-
sified into one class label and have no unclassified pixels in the
imagery.

3.2.3. Artificial Neural Networks
ANNs is an artificial intelligence technique widely used in digital

image analysis. An ANN consists essentially of a massively parallel
distributed processor made up of simple processing units, which
has a natural propensity for storing experiential knowledge and
making it available for use (Haykin, 1994). A basic ANN model
consists of an input layer, a hidden layer and an output layer.
Nodes in the input layer represent variables used as input in the
neural network which they could be spectral bands, textural fea-
tures or other intermediate layers derived from remotely sensed
image. In image classification the nodes in the output layer repre-
sent the classes where in each class will be one output node. The
linkages between nodes represented weightings that lead the infor-
mation flow through the network. Learning occurs by adjusting
the weights in the node to minimize the difference between the
output node activation and the real output, and the error is back
propagated through the network and weight adjustment is made
using a recursive method. ANNs implementation requires setting
a number of parameters. These include the training rate, the train-
ing threshold contribution, the training momentum, the training
RMS  exit criteria field and the number of hidden layers to use and
can choose between a logistic or hyperbolic activation function.
Detailed descriptions of the definitions of those parameters can

be found elsewhere (Atkinson and Tatnall, 1997; Mas  and Flores,
2008).

Herein, ANNs classifier was applied to both the ALI and TM
acquired images using a multi-layered feed-forward ANN type
based on logistic activation function available in ENVI. This tech-
nique uses standard back propagation for supervised learning. In
both cases, a training threshold contribution value of 0.9, a training
rate of 0.2, a training momentum of 0.9 and a training RMS  exit cri-
teria of 0.1 were used. The number of training iterations was  set to
1000 and one hidden layer was  used. The hidden layer configura-
tion was determined by experimentation, as in other studies (e.g.
Mas  and Flores, 2008; Canty, 2009).

3.3. Accuracy assessment

The performance of the classifiers in turn applied to the two
different satellite images and the significance of the results was
thoroughly assessed in three ways, as described below.

3.3.1. Classification accuracy assessment using error matrices
Classification accuracy of the thematic maps was evaluated

based on the computation of overall accuracy (OA), user’s (UA), pro-
ducer’s (PA) accuracy and the Kappa (Kc) statistics (Congalton and
Green, 1999). OA expresses as percentage (%) the probability that
a pixel is classified correctly by the thematic map  and is a measure
of the overall classification accuracy. Kc measures the actual agree-
ment between reference data and the classifier used to perform
the classification versus the chance of agreement between the ref-
erence data and a random classifier. PA for a certain class expresses
what percentage of a category on the ground is correctly classified
by the analyst, and can define a measure of pixels omitted from its
reference class (omission error). Likewise, UA expresses the per-
centage of pixels of a category that do not “truly” belong to the
reference class, but are committed to other ground truth classes
(commission error). In mathematical terms, these parameters are
expressed as follows (Congalton and Green, 1999; Liu et al., 2007):

OA = 1
N

r∑
�=1

nii, (2)

PA = nii

nicol
, (3)

UA = nii

nirow
, (4)

Kc = N

r∑
�=1

nii −
r∑

�=1

nicolnirow

N2
−

r∑
�=1

nicolnirow, (5)

where nii is the number of pixels correctly classified in a category;
N is the total number of pixels in the confusion matrix; r is the
number of rows; and nicol and nirow are the column (reference data)
and row (predicted classes) total, respectively.

In computing the above statistical measures, approximately 44
validation points (i.e. pixels) from each class were selected directly
from the ALI imagery (in total 212 pixels). The correspondence of
the selected points to each class was further verified in the TM
image. Validation points were generally selected in homogeneous
regions and away from the locations where the training points had
been collected, ensuring non-overlap of pixels between the training
data and validation sites. To ensure consistency in our comparisons,
the same set of validation points were used in evaluating the accu-
racy of all the thematic maps produced from the implementation
of the different classifiers.
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3.3.2. Statistical inference in classification accuracy
The statistical significance in the thematic maps accuracy

between a pair of classifiers was further evaluated using the McNe-
mar’s test (Foody, 2004). This is a parametric, very simple to
understand and execute statistical test that can be used in eval-
uating the superiority of one thematic map  over another using the
same validation sample, as was the case in the present study. The
test is based upon the standardised normal test chi-square (�2)
statistic computed from a two by two matrix based on correctly
and incorrectly classified pixels in both classifications using Eq. (7)
below (Foody, 2004; De Leeuw et al., 2006):

�2 = (f12 − f21)2

f12 + f21
, (6)

where f12 denotes the number of cases that are correctly classified
by classifier one but incorrectly classified by the classifier two, and
f21 denotes the number of cases that are correctly classified by clas-
sifier two but wrongly classified by the classifier one (Manandhar
et al., 2009). Thus, this test is focused on the binary distinction
between correct and incorrect class allocations that are derived
directly from the comparison of the error matrices between the
two classifications compared. The derived �2 value from the imple-
mentation of this test is subsequently compared versus tabulated
�2 values to indicate its statistical significance of the differences
between the compared thematic maps products. The McNemar test
was implemented herein three times, comparing the classification
maps derived between the ALI and TM,  for each classification tech-
nique applied. In our study, �2 values were compared for the 95%
and 99% levels of confidence respectively.

3.3.3. Burnt area mapping accuracy assessment
Evaluation of the burnt area estimates was  based on UA and

PA statistics computed from the error matrix with reference to this
specific class (Section 3.3.1). In addition, the burnt area map  derived
from each case was compared against the reference burnt area
estimate acquired previously from SAFER. In this context, burnt
area detection accuracy was evaluated following the rationale of
Kontoes et al. (2009).  Following this approach, accuracy of the burnt
area detection was expressed in terms of detected area efficiency
(DAE), skipped burnt area rate (SBA, omission error) and false burnt
area rate (FBA, commission error). These accuracy figures were cal-
culated on the basis of the following formulae:

Detected area efficiency = DBA
DBA + SBA

,  (7)

Skipped area rate = SBA
DBA + SBA

,  (8)

False area rate = FBA
DBA + FBA

,  (9)

In the above equations, DBA is the Detected Burnt Area (common
area between the generated burn scar polygon and the reference
in situ polygon), FBA is the False Burnt Area (the area included in
the generated burn scar polygon but not in the reference in situ
polygon) and SBA is Skipped Burnt Area (the area included in the
reference in situ polygon but not in the generated burn scar poly-
gon). In order to enable overlay and facilitate efficiency in the
burnt area comparisons, the burnt area estimates from ALI and
TM were extracted from the corresponding classification maps and
were subsequently transformed into vector format. The evaluation
of the accuracy of the burnt area detection by this approach was
performed in ArcGIS software platform (ESRI Inc., v. 9.3.1).

4. Results and discussion

Evaluation of both the land use/cover and burnt area estimates
produced from the implementation of the different classifiers to the
ALI and the TM imagery was subsequently carried out in a compar-
ative manner. The main findings from our analysis are described
and discussed next. For efficiency, first are presented the results
concerning the overall land use/cover mapping classification accu-
racy of the thematic maps produced, followed by the burnt area
mapping comparisons.

4.1. Overall classification

Classification maps derived from the implementation of the
different classifiers to both the ALI and TM post-fire imagery are
illustrated in Figs. 2 and 3 respectively. Table 2 summarises the var-
ious statistical parameters computed for evaluating the accuracy of
the classification maps produced based on the error matrix. In over-
all OA and Kc results ranged from 86 to 95%, and from 0.829 to 0.937,
respectively, signifying a high accuracy of all classification maps. In
ALI classifications OA and Kc ranged from 91 to 95% and from 0.885
to 0.937 respectively, in comparison to the TM classifications where
the same statistical parameters varied from 86 to 93.6% and from
0.829 to 0.920 respectively. Also, clearly, each classifier when com-
bined with ALI produced higher OA and Kc results in comparison to
when the same technique applied with TM data. On  the basis of the
OA and Kc results alone, is seen that ALI outperformed the TM sen-
sor when the ML  and the SVMs classifiers were applied, whereas
the opposite occurred in the case of the ANNs. Also, SVMs when
applied with either ALI or TM produced the highest classification
results in comparison to all other classifiers.

UA and PA statistics for most classes were reported over 70%.
This is suggesting a generally satisfactory performance of the
classification techniques applied in mapping the individual land
use/cover types. PA and UA of different classes in ALI classifications
(73.5% and 83% respectively) were generally higher comparatively
to those from TM (40% and 62% respectively). These results fur-
ther support the previously reported finding that ALI has in general
performed better in classifying the different land use/cover types
in comparison to TM.  Visual inspection of the derived thematic
maps further supports the results of the statistical accuracy assess-
ment; the maps appear similar in many regions, especially in large
homogeneous areas (Figs. 2 and 3). However, there are discrepan-
cies observed regionally, mainly evident in some linear structures
of the “burnt area” class along the coastline as well as borders of
the different land cover classes. Furthermore, noticeable land cover
variations in the interior of the urban areas and of the south-west
part of the study region for both sensors. These features are perhaps
related to artefacts produced from the algorithms’ implementation.

Evidently, for both ALI and TM,  the classes with the highest
mapping accuracy were those of the “burnt area” and the “forests
class”. On the other hand, all classifiers failed to clearly distinguish
the classes “agricultural” and “semi-natural areas”. Nevertheless,
even for those two  latter classes, high PA and OA were returned for
most classifications applied, often above 70%. The high classifica-
tion accuracy of both the “burnt area” and the “forests class” can
be largely attributed to their distinct spectral signatures in com-
parison to the other classes. In comparison to a healthy and living
vegetation a burnt area reflects comparatively more radiation in the
visible (VIS) and shortwave infrared (SWIR) and absorbs radiation
in the NIR, as a result of the destruction of the plant and leaf struc-
ture, vegetation (Yan et al., 2006; Kontoes et al., 2009). In addition,
charcoal is strong absorber over the whole VNIR-SWIR spectrum,
tough reflectance gradually increases with longer wavelengths. On
the other, one possible reason for the lower and imbalanced accu-
racies of some classes such as the “agricultural” and “semi-natural
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Fig. 2. The thematic maps derived from the Advanced Land Imager (ALI) imagery, using the Maximum Likelihood (ML) (a), Support Vector Machines (SVMs) (b) and Artificial
Neural Networks (ANN) (c) classifiers. With the red colour is depicted the burnt area class. (For interpretation of the references to color in this figure legend, the reader is
referred to the web  version of this article.)

Fig. 3. The thematic maps derived from the Landsat Thematic Mapper (TM) imagery, using the Maximum Likelihood (ML) (a), Support Vector Machines (SVMs) (b) and
Artificial Neural Networks (ANN) (c) classifiers. With the red colour is depicted the burnt area class. (For interpretation of the references to color in this figure legend, the
reader  is referred to the web version of this article.)

Table 2
Summary of the classification results obtained from the implementation of the different classifiers to the Advanced Land Imager (ALI) and Landsat Thematic Mapper (TM).

Maximum Likelihood Artificial Neural Networks Support Vector Machines

Producer’s
accuracy (%)

User’s
accuracy (%)

Producer’s
accuracy (%)

User’s
accuracy (%)

Producer’s
accuracy (%)

User’s
accuracy (%)

ALI TM ALI TM ALI TM ALI TM ALI TM ALI TM

Agricultural areas 73.47 59.18 85.71 100 75.51 40.82 94.87 100.00 81.63 73.47 95.24 100.00
Artificial surfaces 87.80 100.00 97.30 97.62 95.12 97.56 100.00 100.00 95.12 97.56 88.64 100.00
Forests 100.00 100.00 100.00 100.00 100.00 100.00 97.62 100.00 100.00 100.00 100.00 100.00
Semi-natural areas 97.56 100.00 83.33 73.21 100.00 100.00 87.23 62.12 100.00 100.00 91.11 82.00
Burnt  area 97.78 97.78 100.00 100 100.00 100.00 100.00 100 100.00 100.00 100.00 100.00

Overall accuracy 90.78 90.32 93.58 86.18 94.93 93.55
Kappa coefficient 0.885 0.879 0.920 0.829 0.937 0.920
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areas” might be related to the fact that in the field those classes
had covered small areas and were often distributed in or around
other land cover types. The latter, at the spatial resolution of 30 m
of either ALI or TM can result to mixed pixels, which results to
making it difficult to spectrally distinguish those classes with any
of the pixel-based classifiers used herein. However, ALI showed an
increased ability to spectrally discriminating the classes consid-
ered due to its higher number of spectral bands in comparison to
TM.  The statistical results of the spectral separability of the training
points has also evidenced a lower separability between the agricul-
tural and the semi-natural areas classes, in comparison to all other
pairs of classes compared for both TM and ALI. Yet, ALI separability
indices were higher than those of TM.

Results obtained clearly showed that the SVMs outperformed
the other classifiers when combined with either ALI or TM image
data. This appeared to be the case, at least in our study. The latter,
can be accredited to a number of reasons. SVMs offer additional
benefits in contrast to alternative classification models, as for exam-
ple with ANNs or ML.  SVMs have been designed to be able to identify
an optimal separating hyperplane for classes’ separation, which
makes those classifiers resilient to getting trapped in local min-
ima, as for example with ANNs. This is because of the convexity of
the cost function which enables the classifier to consistently iden-
tify the global minimum, i.e. the optimal solution (e.g. Huang et al.,
2002). As a result, SVMs are successful addressing ill-posted prob-
lems providing high classification accuracy results in comparison to
other classifiers, even in cases when small training sets are used. An
additional advantage of SVM is that their implementation does not
require any assumption as regards the statistical distribution of the
data to be classified, as for example is the case of the ML  classifier
implementation. This is particularly useful, since remotely sensed
data follow usually unknown distributions (e.g. Mountrakis et al.,
2011). The latter characteristic allows SVMs outperforming para-
metric classification techniques (such as ML  applied here) because
normality does not always give a correct assumption of the actual
pixels distribution in each class (Su and Huang, 2009). In addition
to the above, specifically the ML  classifier is based on the assump-
tion of only linear relationships between spectral data and class
assignment (Friedl & Brodley, 1997 in Helmer et al., 2010), which
is not always the case in nature. This can partially explain the
ML lower classification accuracy in comparison to either SVMs or
ANNs. Last but not least, in comparison to other machine learn-
ing classifiers (such as ANNs), SVMs implementation requires a
small set of training points and a few only parameters need to be
adjusted by the user. Yet, as a key limitation of all the classifiers
employed herein could be accounted the fact that those do not
operate on a sub-pixel level. The latter, can result to misclassifi-
cation errors occurred due to possible pixel mixture problems and
can be particularly evident when coarse spatial resolution data is
used.

ALI and TM have similar spatial resolution, which indicates prac-
tically the same mapping scale. However, differences were clearly
observed in the classification results for each classifier implementa-
tion, with the ALI classification outperforming – marginally in some
cases – that of TM (Table 2). The latter can be largely attributed
to the differences between the two sensors technical specifica-
tions, specifically the contribution of additional bands as well as
the higher signal to noise ratio and increased dynamic range of ALI
in comparison to TM.  This finding is in agreement to other stud-
ies comparing ALI capability comparatively to Landsat TM/ETM+
in various applications including land use/cover. Such studies have
also underlined that that ALI improved dynamic range and signal-
to-noise ratio, and additional multispectral bands can provide an
enhanced capability for studying land use/land cover characteris-
tics and its changes (Thenkabail et al., 2004; Neuenschwander et al.,
2005; Pu et al., 2005; Deller, 2006; Helmer et al., 2010).

The statistical significance of the differences observed between
classifier-sensor pairs was  investigated by applying the McNemar
non-parametric test at statistical significance 95% and 99% confi-
dence levels (Table 3). Results showed that differences in the ML
classification between ALI and TM were found significant at 95%
confidence level. On the other, the differences in the classification
results for the case of SVMs and ANNs implementation were found
significant at 99% confidence level. The above results further sup-
ported the argument stated previously that the presence of the
additional spectral bands and higher SNR of ALI image data assisted
in improving somehow the overall classification accuracy.

Last but not least, our classification accuracy results agree to
those reported in previous studies also examining land use/cover
mapping using ALI data. For example, Neuenschwander et al. (2005)
performed a comparative study between ALI and ETM+ in land
cover mapping for a region in Okavango Delta, Africa. Authors
applied the Bayesian Pairwise pixel-based classifier (Crawford et al.,
1999) for mapping land cover and reported consistently higher
classification accuracy by ALI in comparison to ETM+ with OA and
kappa ranging from 75 to 81% and 0.737 to 0.798 respectively. In
another work, Thenkabail et al. (2004) compared the performances
of four sensors (namely Hyperion, IKONOS, ALI, and ETM+) for map-
ping rainforest in southern Cameroun in Africa. Authors reported
low OA accuracies in classifying nine complex rainforest classes
ranging from 42 to 51%, with ALI exhibiting the highest perfor-
mance among the broadband sensors. To our knowledge, no other
investigations have been concerned with the evaluation of ALI in
land use/cover mapping by image classification. As regards the clas-
sification results from the TM sensor, our results agree favourably
to findings from previous works conducted, reporting generally
higher classification performance by SVMs in comparison to ANNs
(e.g. Nemmour and Chibani, 2006; Dixon and Candade, 2008).

4.2. Burnt area mapping

Of special interest is the evaluation of the burnt area retrievals
from the combination of the different classifiers with the co-orbital
ALI and TM post-fire imagery acquired shortly after the fire sup-
pression. Apart from the evaluation on the basis of the error matrix
statistics (UA, PA – Table 2), the classified burnt areas were assessed
against the validated burnt area estimate from SAFER operational
service (Table 4). A visual observation of the spatial agreement of
the burnt area estimates illustrated in Figs. 4 and 5 indicates that all
classifications returned a generally similar burn scar shape, close to
that mapped by the reference polygon from SAFER. The latter is sug-
gestive of a generally high-quality spatial agreement between the
compared datasets. The commonly identified burnt area between
the output and SAFER dataset is depicted in green colour, and is
high for the comparisons performed in all cases. Clearly, for both
ALI and TM burnt area mapping results, with respect to SAFER esti-
mate, higher omission (in red) and commission errors (in cyan)
appear in the burn scar derived from the implementation of the ML
and ANN methods, in comparison to that from the SVMs.

In terms of absolute accuracy, all classifications carried out
returned results in close agreement to the SAFER estimate. Abso-
lute differences in burnt area estimate between SAFER and ALI
ranged from 8.24 to 17.53% and between SAFER and TM between
8.4% and 17.5%. Noticeably, highest agreement in the total burnt
area estimates was generally observed in the case of SVMs imple-
mentation (∼8% difference from SAFER), followed by ANNs (∼11%
difference from SAFER) and finally ML  classifiers (∼15% difference
from SAFER).

As in Kontoes et al. (2009),  a further set of statistical param-
eters were computed to quantitatively evaluate the ability of the
different classifiers in predicting burnt area in comparison to the
reference estimate from SAFER (Table 4). Results showed that the
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Table 3
McNemar test results for the case of the different classifiers compared herein between ALI and TM.

Classification method f11 f12 f21 f22 Total Chi-square (�2) p-Value

Maximum Likelihood 179 16 6 11 212 6.55 <0.05
Artificial Neural Networks 186 17 2 7 212 11.84 <0.001
Support Vector Machines 188 18 1 5 212 15.21 <0.001

f11: number of cases with correct classification in both maps; f12: number of cases that are correctly classified by ALI but incorrectly by TM;  f21: number of cases that are
correctly classified TM,  but incorrectly by ALI; f22: number of cases that are wrongly classified by both ALI and TM.

Table 4
Summary of the burnt area comparisons between SAFER and those derived from the implementation of the different classifiers to the ALI and Landsat-TM images.

Classification
method
tested

Common burnt area
between prediction &
SAFER (DBA)

False burnt
areas (FBA)

Skipped
burnt areas
(SBA)

Detection
efficiency rate (%)
[DBA/(DBA + SBA)]

Commission error
(false alarm rate) (%)
[FBA/(DBA + FBA)]

Omission error (%)
[SBA/(DBA + SBA)]

ALI ML  104.15 18.68 22.14 0.825 0.152 0.208
ALI ANN 113.89 27.65 12.41 0.902 0.195 0.098
ALI  SVM 115.89 23.14 10.50 0.917 0.166 0.083

TM  ML  110.44 16.23 15.86 0.874 0.128 0.126
TM  ANN 113.29 20.68 13.00 0.897 0.154 0.102
TM  SVM 115.79 23.14 10.50 0.917 0.167 0.083

highest burnt area detection efficiency rate (DBA) observed for the
case of SVMs classifier implementation, followed by ANNs and ML.
This appeared to be the case in both ALI and TM classifications.
Similarly, skipped burnt area (SBA, omission error) was  also low-
est in the case of SVMs in comparison to the other classifiers for
both ALI and TM results. Yet, in terms of falsely detected burnt area
(FBA, commission error), no clear trends in observations could be

noticed, apart from the fact that the ML  results had the lowest FBA
reported for both ALI and TM.

Differences in the burnt area estimates can be attributed to sev-
eral factors. Variations in the principles that govern the classifiers
operation that result to exploiting differently the spectral informa-
tion content of the burnt area recorded by each sensor can in part
explain the differences in the results obtained (Giglio et al., 2006).

Fig. 4. Comparisons of the burnt area estimates derived from the combined use of Advanced Land Imager (ALI) sensor with the different classifiers applied, versus those
from  SAFER. It is shown the commonly identified burnt area between ALI and SAFER (green), the burnt area identified only by SAFER (red) and the burnt area identified only
by  ALI (cyan). (For interpretation of the references to color in this figure legend and in text, the reader is referred to the web version of this article.)
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Fig. 5. Comparisons of the burnt area estimates derived from the combined used of Landsat Thematic Mapper (TM) with the different classifiers applied, versus those from
SAFER. It is shown the commonly identified burnt area between TM and SAFER (green), the burnt area identified only by SAFER (red) and the burnt area identified only by
TM  (cyan). (For interpretation of the references to color in this figure legend and in text, the reader is referred to the web  version of this article.)

Findings from our work suggest that application of SVMs to ALI or
TM produces the highest burnt area delineation accuracy. Previous
studies using different types of satellite datasets have also demon-
strated the superiority of SVMs over other classifiers for burnt area
extraction (Cao et al., 2009; Petropoulos et al., 2011a). Discrepan-
cies in the burnt area estimates can also increase with increasing
heterogeneity of the burned surface, as is the case in Mediter-
ranean landscapes. In addition, shaded surfaces present in terrains
of high topography variation, as is the case of many Mediterranean
landscapes, may  cause spectral confusion resulting to pixel misclas-
sification and subsequent overestimation of burnt areas (Tanaka
et al., 1983; Sedano et al., 2011). Finally, differences in the spec-
tral and sensor technologies between different remote sensing
radiometers, as in our case, can also partially explain differences
in the burnt area estimates even when the same technique is used
(Eva and Lambin, 2000; Boschetti et al., 2004). Our results show that
the benefit from the ALI use in burnt area extraction appears to be its
higher number of spectral SWIR bands in combination to its higher
SNR. In agreement with previous studies specifically the presence
of the additional SWIR bands assists in better detection capability of
the burnt area spectral responses of different land surface objects.
Roy et al. (2008) using MODIS data demonstrated that for several
types of ecosystems the highest spectral separability of burnt area
corresponded to the near infrared (841–876 nm)  and short wave
infrared bands (1230–1250 nm). Since only ALI has a band (band
5p) in this shortwave infrared region, this results to an increased
burn scar detection capability of the sensor in comparison to TM.

Authors in the same study showed that luck of shortwave infrared
band in this spectral region in imposes potentially a limitation in
burnt area detection capability of a sensor since vegetation senes-
cence or removal can result in similar near infra red reflectance than
burned scars. Thus, all in all, SVMs due to their technical character-
istics in comparison to other classifiers were able to better exploit
the ALI advanced spectral configuration characteristics, producing
more accurate results in burnt area extraction.

5. Conclusions

The aim of our study was to evaluate the capability of ALI with
respect to Landsat TM for land cover mapping and burnt area delin-
eation, when combined with different pixel-based classification
techniques. ML,  ANNs and SVMs classifiers were parameterised and
subsequently applied to the acquired images. As a case study we
used a Mediterranean fire event that occurred close to the capital
of Greece in summer 2009. Both ALI and TM images were acquired
shortly after the fire.

The classification results demonstrated that any pair of
classifier-sensor returned acceptable land use/cover and burnt area
maps. However, one pair, namely SVMs-ALI, provided marginally,
yet statistically significant, higher accuracy. SVMs proved capable
of taking advantage of the ALI’s improved technical specifications.
The latter, allowed SVMs to deal more efficiently with the land-
scape structure complexities of our study site in comparison to
the other classifiers tested. From an algorithmic perspective, these
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findings consist a serious motivation and promise for future
advances in terms of the SVMs algorithm development in the con-
text of the development of the future Landsat 8 mission for which
ALI has been specifically developed.

All in all, our study opens new perspectives in burnt area map-
ping, as this is the first study bringing concrete evidence with
respect to the capability of ALI radiometer for accurate burnt area
detection and delineation. ALI sensor, as its predecessor, the TM,
satisfies the needs for low-cost, rapid, accurate, regional mapping
of burnt areas.
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