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a b s t r a c t

Information on burnt area is of critical importance in many applications as for example in assessing the
disturbance of natural ecosystems due to a fire or in proving important information to policy makers on
the land cover changes for establishing restoration policies of fire-affected regions. Such information is
commonly obtained through remote sensing image thematic classification and a wide range of classifiers
have been suggested for this purpose. The objective of the present study has been to investigate the use of
Support Vector Machines (SVMs) classifier combined with multispectral Landsat TM image for obtaining
burnt area mapping. As a case study a typical Mediterranean landscape in Greece was used, in which
occurred one of the most devastating fires during the summer of 2007. Accuracy assessment was based
on the classification overall statistical accuracy results and also on comparisons of the derived burnt
area estimates versus validated estimates from the Risk-EOS Burnt Scar Mapping service. Results from
the implementation of the SVM using diverse kernel functions showed an average overall classification
accuracy of 95.87% and a mean kappa coefficient of 0.948, with the burnt area class always clearly sep-
arable from all the other classes used in the classification scheme. Total burnt area estimate computed
from the SVM was also in close agreement with that from Risk-EOS (mean difference of less than 1%).

Analysis also indicated that, at least for the studied here fire, the inclusion of the two middle infrared
spectral bands TM5 and TM7 of TM sensor as well as the selection of the kernel function in SVM imple-
mentation have a negligible effect in both the overall classification performance and in the delineation of
total burnt area. Overall, results exemplified the appropriateness of the spatial and spectral resolution of
the Landsat TM imagery combined with the SVM in obtaining rapid and cost-effective post-fire analysis.
This is of considerable scientific and practical value, given the present open access to the archived and

is sa
new observations from th

. Introduction

Forest fires are regarded as one of the most threatening sources
f disturbance for property, infrastructure as well as ecosystems. In
he Mediterranean region, for millennia fire has been a major eco-
ogical factor with a long and important presence (Naveh, 1975;
Please cite this article in press as: Petropoulos, G.P., et al., Burnt area d
imagery classification using Support Vector Machines. Int. J. Appl. Ear

ayor et al., 2007). The prolonged arid and hot summer periods
avour the ignition and rapid propagation of fires especially with
trong winds, resulting in large burnt areas every year (Cuomo et
l., 2001; FAO, 2001). Nearly 90% of all the wildland forest fires
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in the European Union take place in the Mediterranean countries
(Rosa et al., 2008). Particularly in the last decades, forest fires in
the Mediterranean have increased in frequency, as a result of vari-
ous climatic and anthropogenic factors (Maselli et al., 2003; ECFFE,
2006—Fig. 1).

Being able to obtain accurate as well as rapid mapping of burnt
areas after a fire suppression, is of key importance in policy decision
making, as it can be used effectively in establishing rehabilitation
and restoration policies in the affected areas and also in assist-
ing to avoid post-fire hazards and long-term degradation (Giglio
et al., 2006). Burnt area delineation on an operational basis can
also provide important information on land cover changes related
to ecology and biodiversity, assisting significantly in understanding
elineation from a uni-temporal perspective based on Landsat TM
th Observ. Geoinf. (2010), doi:10.1016/j.jag.2010.06.008

post-fire recovery of an affected area (Rong et al., 2004). Last but
not least, estimates of total area burnt is also a key input parameter
in the modelling the atmospheric and climatic impacts of biomass
burning, as well as in the estimation of the total atmospheric emis-
sions from it (Kasischke and French, 1995).
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Fig. 1. Yearly reported burnt area at five southern European member sta

The contribution of remote sensing in fire analysis, including
he evaluation of impacts from wildfires was early recognized
Jayaweera and Ahlnas, 1974). Among the advantages of remote
ensing compared to conventional field surveys is the provision
f timely and often inexpensive imagery at an adequate spatial
esolution at low or no cost from local, to regional and global
cale. In general, remote sensing methods employed in burnt
rea mapping have been based on the alteration of the spectral
haracteristics of the land surface after a fire, which results to a
trong contrast between the fire-affected areas and the surround-
ng environment. These changes are most obvious in the reflective
art (0.45–3.0 �m) of the electromagnetic spectrum. Burnt area
etection methods are generally categorised according to either
he number of satellite observations used in the analysis or the

ethod of image processing carried out. Comprehensive reviews
n the topic are available for example in Lentile et al. (2006) and
mith et al. (2007). Briefly, as regards the number of images used,
he methods can be uni-temporal or multi-temporal, depending
n whether a single post-fire imagery or a pre-fire and post-
re imagery is used. Uni-temporal, also known as single-image,
pproaches have important advantages over multi-temporal meth-
ds, namely their lower cost and shorter processing time (Koutsias
t al., 1999). In addition, these methods do not either require pre-
ise image-to-image registration or corrections for errors resulting
rom sun-sensor geometry, atmospheric effects and possibly differ-
nces in sensor calibration (Verbyla and Boles, 2000). However, in
hese approaches, the single-image has to be acquired very shortly
fter the suppression of the fire as otherwise, the spectral sig-
al of the burnt areas becomes less evident (Corona et al., 2008).
hat is more, a potential limitation of single-date burned area
apping is that it in such methods is not possible to determine
hich land cover types have been affected by the fire to assess

he post-fire damage if a land cover map of the affected site is not
lready available for the studied site. On the other hand, multi-
emporal approaches offer the advantage of reduced the spectral
onfusion with the types of permanent cover (Escuin et al., 2008).
s far as image processing is concerned, the methods vary from the
alculation of simple radiometric indices, such as the Normalised
ifference Vegetation Index (NDVI; Deering et al., 1975) and the
ormalised Burnt Ratio (NBR; Kasischke and French, 1995), to other
ore complex approaches such as image classification and sub-

ixel analysis methods with pixel spectral unmixing (Kokaly et al.,
007; Eckmann et al., 2008). In addition, there exist the decision
ree classification approaches (Simard et al., 2000; Kontoes et al.,
Please cite this article in press as: Petropoulos, G.P., et al., Burnt area d
imagery classification using Support Vector Machines. Int. J. Appl. Ear

009). A few studies have also proposed the retrieval of burnt area
ased on surface temperature distribution analysis using the ther-
al infrared part of electromagnetic spectrum (Eva and Lambin,

000).
mely: Greece, Italy, Portugal, Spain and France. Adopted from (EU, 2006).

A wide variety of remote sensing sensors are used to delineate
burnt area, with Landsat Thematic Mapper (TM) being one of them.
This satellite radiometer has a number of advantages for deriving
burnt area estimates. It is currently the only high spatial resolu-
tion sensor (30 m in the reflective shortwave channels and 120 m
in one thermal infrared channel), providing today at no cost – sub-
ject to proposal approval in some occasions – global image data at
high spectral resolution (7 bands from visible to thermal infrared),
compared to freely distributed coarser spatial resolution imagery
(e.g. Moderate Resolution Imaging Spectroradiometer – MODIS,
Medium Resolution Imaging Spectrometer – MERIS, Advanced Very
High Resolution radiometer – AVHRR) or other high spatial reso-
lution radiometers (e.g. Advanced Spaceborne Thermal Emission
and Reflection Radiometer – ASTER, Advanced Land Observation
Satellite – ALOS) which have on occasion high acquisition cost.

Several studies applying a variety of approaches have addressed
the use of Landsat TM in burnt area mapping at various geographi-
cal regions (Dixon and Candade, 2008) including the Mediterranean
region (Quintano et al., 2006). Many of these studies have been
based on the implementation of image classification approaches,
demonstrating the usefulness of different classification approaches
for burnt area mapping (Sunar and Ozkan, 2001; Kokaly et al.,
2007). However, little attention seems to have been paid so far
in exploiting the advantages of Support Vector Machines (SVMs,
Vapnik, 1995) classifier combined with Landsat TM observations
for this purpose. SVMs have several advantages in comparison to
other classifiers, as they can be applied requiring limited effort in
their training and they do not make any assumption for the prob-
ability distribution of the training datasets used as for example is
the case for the maximum likelihood parametric classifier. More-
over they are able to deal easily with high dimensionality datasets
and have proven to address effectively the ill-posted problems pro-
viding high classification accuracies. SVM classifier has generally
been implemented in many classification problems using differ-
ent classes number employed in classification and remote sensing
data acquired at different spatial scales (e.g. SPOT, MODIS, Landsat
TM/ETM+) producing reliable results (e.g. Huang et al., 2008; Carrao
et al., 2008; Knorn et al., 2009; Kavzoglu and Colkesen, 2009). Other
investigators have also examined the potential use of SVM clas-
sifier combined with hyperspectral data, reporting also generally
good results (Pal, 2006; Dalponte et al., 2009). Nevertheless, to our
knowledge, very few research studies have so far investigated the
potential importance of kernel function selection in the success of
the SVM classification (e.g. Keuchel et al., 2003; Li and Liu, 2010).
elineation from a uni-temporal perspective based on Landsat TM
th Observ. Geoinf. (2010), doi:10.1016/j.jag.2010.06.008

Also, very few works have been directed so far in examining the
effect of spectral bands information inclusion to the SVM classifi-
cation performance, and this has been done only for limited types of
kernel functions (e.g. Huang et al., 2002; Zammit et al., 2006; Cao et

dx.doi.org/10.1016/j.jag.2010.06.008
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ig. 2. Location of the study site is shown on the left side of the map. On the centre
ust a few days after the fire suppression. Study site shown in the subset of the Land
epicted the burn scar.

l., 2009). What is more, the potential added value of SVM classifier
ith remote sensing data for burnt area mapping has also not ade-

uately investigated as yet; studies implemented so far have only
een based on binary classification approach (burnt/non-burnt),
hus not fully exploiting the SVM potential to use the quantity of
pectral information from the remote sensing imagery for separat-
ng the burnt area from the other land surface classes (Zammit et al.,
006; Cao et al., 2009). Furthermore, the question remains today on
hether SVM combined particularly with the spectral quality and
igh spatial accuracy of Landsat TM imagery is sufficient to pro-
ide a cost-effective means to rapidly map burnt scars and assess
ost-fire damage.

The present study addresses the above questions and has a main
bjective to explore for the first time the potential value of the
ombined use of the SVM with Landsat TM observations for accu-
ate and cost-effective burnt area cartography in a Mediterranean
etting. In this framework, this study also investigates the effect
f kernel function selection and of different Landsat TM spectral
ands input to the overall classification accuracy, but also in the
elineation of the burnt area class in particular. Furthermore, the
resent work also builds on previous studies concerned with the
valuation of mapping the burnt area extent at national level, a
opic of sustained interest until today (Bochetti et al., 2008; Kontoes
t al., 2009; Petropoulos et al., 2010).

. Experimental set-up

.1. Study site
Please cite this article in press as: Petropoulos, G.P., et al., Burnt area d
imagery classification using Support Vector Machines. Int. J. Appl. Ear

The study site comprises the wider area of Mt. Parnitha, located
bout 30 km north of Athens, Greece (Fig. 1). The study area cov-
rs approximately 200 km2 with an altitude ranging from 200 to
400 m above sea level and slopes ranging from 3 to 90%. Mt. Par-
itha is representative of the mixed characteristics of the eastern
strated the Landsat-5 TM satellite imagery acquired for the site on July 3rd, 2007,
post-fire imagery with acquisition date on July 3rd, 2007. With the black color is

Mediterranean regions covered by Greek Fir and Aleppo Pine for-
est at altitudes between 300 and 1000 m. Above 1000 m height the
dominant land types are grassland and scrubland, and below 300 m
farmland (to the north) and suburban housing (to the east). The
region of Mt. Parnitha is also included in the European network of
protected areas Natura 2000 due to the presence of its high bio-
diversity. Mt. Parnitha experienced severe damage from a wildfire
outbreak on June 28th, 2007, which was suppressed five days later
(July 1st, 2007).

2.2. Datasets description

A Landsat-5 TM multispectral imagery (path: 183, row: 33)
with an acquisition date of July 3rd, 2007 – 2 days after the fire
suppression – was obtained at no cost from the United Stated
Geological Survey (USGS) archive (http://glovis.usgs.gov/) (Fig. 2).
Image selection was based on the fulfillment of criteria of cloud-free
conditions and acquisition date as close as possible to the fire event.
In addition to the TM imagery, the CORINE 2000 Land Cover (CLC)
map (JRC-EEA, 2005) at a spatial resolution of 100 meters for the site
was obtained at no cost (from http://reports.eea.europa.eu/COR0-
landcover/en). Furthermore, the burnt area map from the Risk-EOS
Burnt Scar Mapping service for this specific fire event was obtained.
Risk-EOS (http://www.risk-eos.com/actus/pge/index.php?arbo=0)
was developed in the framework of the GMES-SE programme
(Global Monitoring for Environmental Security/Service Element)
of the European Space Agency. It is an operational and validated
crisis response service to situations engendered by natural disas-
ters, covering from prevention to crisis management and damage
elineation from a uni-temporal perspective based on Landsat TM
th Observ. Geoinf. (2010), doi:10.1016/j.jag.2010.06.008

assessment. Benchmarking studies performed recently concerning
the evaluation of burnt area estimates computed based on the Risk-
EOS methodology have indicated a burnt area detection capability
over scars size of the order of 0.1 ha (Kontoes et al., 2009) using
high resolution satellite imagery. For this specific fire event at Mt.

dx.doi.org/10.1016/j.jag.2010.06.008
http://glovis.usgs.gov/
http://reports.eea.europa.eu/COR0-landcover/en
http://www.risk-eos.com/actus/pge/index.php%3Farbo=0
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arnitha, the Risk-EOS service burnt area estimate had been based
n the application of a fixed thresholding method applied to a post-
re SPOT (XS) imagery (20 m spatial resolution). The derived burnt
rea map was subsequently validated and fine-tuned by visual
hoto-interpretation and on-screen digitization of an orthorecti-
ed very high spatial resolution satellite imagery (IKONOS) assisted
lso by on-site conducted GPS measurements (Kontoes et al., 2009).

. Support Vector Machines

In this section a summary of the principles of SVM classifica-
ion method is provided, whereas comprehensive description of

ethod operation can be found for example in Burges (1998) and
oody and Mathur (2004). SVM is a supervised machine learning
ethod preforming supervised classification based on statistical

earning theory (Vapnik, 1995).
To full understand the SVM operation, let us assume first the

implest scenario of a binary classification, where two classes
eeded to be linearly separated. First, we assume that a set of rep-
esentative training data has been collected, which will be used to
erform the binary classification. On this basis, the training set is
epresented as a feature vector −→x1, . . . , −→xN , and the corresponding
raining labels which have also previously defined are represented
s y1, . . . , yN, where yi ∈ [−1, +1], as here we consider the binary
ase.

In its simplest form, the linear SVM attempts to calculate the
yperplane −→w , defined as −→w = w1, . . . , wN which is able to best
eparate the positive (i.e. +1) from the negative training points
elected (i.e. −1). From all possible hyperplanes that can separate
he training examples, it is chosen the one that maximises the sum
f the distance defined between the hyperplane and the nearest
ositive and negative training example, called the margin, and this
yperplane is called “optimal hyperplane”. For the case where the
argin is parameterized as a linear hyperplane with an offset b, the

atter is expressed as:

w · −→x + b = 0 (1)

where in the above equation x is a point lying on the hyperplane,
is a parameter determining the hyperplane orientation in space,

nd b represents the distance of the hyperplane from the origin.
ach of data points must fall on the proper side of the hyperplane,
s follows:

i · −→xi + b ≥ +1 (2)

i · −→xi + b ≤ +1 (3)

here the above two equations, combined are expressed from the
ollowing inequality:

i (−→xi · −→w + b) − 1 ≥ 0, (4)

From all the training data points, those which are parallel to the
ptimum hyperplane are called support vectors, and are essentially
he points which satisfy the equation:

i (−→xi · −→w + b)− = ±1 (5)

Thus, the otpimal hyperplane can be found by minimizing −→w
hile satisfying Eq. (4) from which it shown that this is happening
hen the margin is be equal to 2/||−→w ||.

In order to represent more complex hyperplane shapes than lin-
ar, the techniques can be extended using kernel functions, K(�xi, �w)
eplacing the vector product in Eqs. (1) and (4). In this case, the
Please cite this article in press as: Petropoulos, G.P., et al., Burnt area d
imagery classification using Support Vector Machines. Int. J. Appl. Ear

roblem transforms into an equivalent linear hyperplane prob-
em of higher dimensionality. Use of the kernel function essentially
llows the data points to be classified to spread in a way that allows
he fitting of a linear hyperplane. SVM also introduces a cost param-
ter C to quantify the penalty of misclassification errors in order
 PRESS
Observation and Geoinformation xxx (2010) xxx–xxx

to handle non-separable classification problems. Commonly used
SVM kernels include the polynomial, the radial basis function (RBF)
and the sigmoid kernels, whereas new kernels can also be obtained
from simple mathematical operations of kernels.

4. Methodology

4.1. Landsat TM pre-processing

The Landsat-5 TM Level 1T image obtained from USGS archive
is precision and terrain-corrected. The geo-referencing accuracy of
the image was initially checked versus a reference IKONOS imagery
(equivalent scale map 1:10,000) of the same area, available from
a previous study. Comparison indicated a positional error in the
order of the pixel size of the TM image (i.e. 30 m), that was consid-
ered adequate for the purposes of this study. All image processing
that followed was subsequently applied to this specific TM imagery
and was performed in ENVI software (v4.7, ITT Visual Information
Solutions). ENVI is a commercial image processing platform dedi-
cated to digital imagery visualisation and analysis which includes
advanced image processing and analysis tools for a wide variety
of remote sensing data. In order to achieve faster computational
processing, the first step involved performing a subset from the
acquired imagery of the wider area covering the region of Mt. Par-
nitha (Fig. 2, right). The next step involved the selection of the
number of classes as well as of the TM spectral bands to be used
for the SVM implementation. The classification scheme used herein
included five classes, namely: burnt area, agricultural areas, forests,
scrubland/herbaceous vegetation, and urban fabric/bare soil areas.
Regarding the number of spectral bands used in the SVM-based
classification, initially the first four (TM1, TM2, TM3 and TM4) and
subsequently all the six optical bands of TM sensor were used to
define the multi-dimensional feature space of the SVM classifier.
This was decided in order to gain an insight into the sensitivity of
the overall SVM results to the spectral bands combination used as
input in its parameterization stage.

The next step involved the selection of the training and valida-
tion set of pixels from the TM imagery for the SVM implementation
and validation of the produced thematic maps, respectively. Gen-
erally, it is suggested that a minimum of 10–30p cases per class
be used for training, where p is the number of wavebands used
(Piper, 1992; Mather, 2004; Van Niel et al., 2005). In addition,
specifically for SVM, previous studies have shown that this classifier
is able to generally provide very satisfactory classification results
when small training sets are used (Pal and Mather, 2006). In our
study approximately 180 representative training pixels for each
class were selected from the Landsat TM image based on a random
distribution. An additional set of approximately 60 pixels for each
class, also randomly selected, was also selected with the intention
to be used in the validation of the produced thematic maps. Selec-
tion of the most spectrally pure pixels for each class was mainly
based on the CLC2000 map of the studied region obtained previ-
ously validated where necessary on the IKONOS imagery which
was also available for the studied region as mentioned before. As
a further test of the appropriateness of the selected training and
validation sets pixels for each class, it was computed their statisti-
cal separability in ENVI using both the Jeffries–Matusita and the
Transformed Divergence separability statistical measures (ENVE
User’s Guide, 2008). This software feature allows computing the
spectral separability of collected regions of interest, with reference
elineation from a uni-temporal perspective based on Landsat TM
th Observ. Geoinf. (2010), doi:10.1016/j.jag.2010.06.008

to a number of spectral channels of an input file (multispectral
or hyperspectral satellite imagery) considered each time. Gener-
ally, spectral separability values ranges from 0 to 2.0 and indicate
how well the selected regions of interest spectral pairs are statisti-
cally separate. Values greater than 1.9 generally are interpreted as

dx.doi.org/10.1016/j.jag.2010.06.008
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Fig. 3. Average spectral signatures of the selected training sites for all the
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lasses used in the SVM classifier implementation with Landsat TM imagery.
N refers to the pixels’ digital number. The central wavelengths of the
ands are (TM1 = 0.485 �m, TM2 = 0.560 �m, TM3 = 0.660 �m, TM4 = 0.830 �m
M5 = 1.650 �m and TM7 = 2.215 �m).

very good separability between the compared spectra, whereas
ery low separability values (less than 1) indicate that the com-
ared spectra might be appropriate to be combined into a single
ne. In the present study, spectral separability was performed by
omparing the mean pixel spectral values of the selected training
ites (essentially the mean digital numbers of at-sensor radiances).
heir spectral separability was examined using both the first four
hannels of the Landsat TM (i.e. TM1, TM2, TM3 and TM4) and
lso all the sensor reflective channels, as SVM would be applied in
oth of these scenarios. Separability index for the training sites was
ound always higher than 1.18 and 1.58 for the case of a four- and
ix-band imagery, respectively, whereas for the validation points it
as higher than 1.45 and 1.72, respectively. Also, at this point it is
orthwhile to note that always lower separability was observed in

he separation between the urban/industrial and the agricultural
lasses. This can also be observed in Fig. 3, which shows the mean
pectra for each class versus all the reflective Landsat TM bands for
he case of the selected set of training pixels.

.2. SVM implementation

In the present study multiclass SVM pair-wise classification
trategy was applied using ENVI image processing environment.
his method is based on creating a binary classifier for each possible
air of classes, choosing the class that achieved the highest prob-
bility of identification across the series pair-wise comparisons. A
umber of studies have indicated that the kernel selection is impor-
ant for the performance of the SVM classifier (Keuchel et al., 2003;
avzoglu and Colkesen, 2009; Li and Liu, 2010), all the kernel func-

ions available in ENVI software were applied in the present study.
hese are:

inear : K(xi, xj) = xT
i xj (6)

olynomial : K(xi, xj) = (�xT
i xj + r)

d
, � > 0 (7)

adial basis function : K(xi, xj) = exp(−� ||(xi, xj)||2), � > 0 (8)

igmoid : K(xi, xj) = tan H (�xT
i xj + r) (9)
Please cite this article in press as: Petropoulos, G.P., et al., Burnt area d
imagery classification using Support Vector Machines. Int. J. Appl. Ear

here � is the gamma term in the kernel function for all kernels
xcept linear, d is the polynomial degree term in the kernel function
f the polynomial kernel, r is the bias term in the kernel function
or the polynomial and sigmoid kernels. � , d, and r are user-defined
 PRESS
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parameters, as their correct definition significantly increases the
SVM accuracy solution.

SVM was implemented in all cases at the original sensor spa-
tial resolution (i.e. 30 m) for all different kernel types using initially
the first four (TM1, TM2, TM3 and TM4) and subsequently using
all the six reflective sensor spectral bands. This allowed examin-
ing the potential benefits of the inclusion of additional spectral
information to both the SVM overall classification performance and
also to the delineation of the total burnt area from the TM image.
For the implementation of the different kernel functions a num-
ber of parameters needed to be set. Generally very little guidance
exists in the literature concerning the criteria to be used in select-
ing the kernel-specific parameters (e.g. Carrao et al., 2008; Li and
Liu, 2010). In the present study, parameterization of each of the
four kernels was based on performing a number of trials of param-
eters combinations, using classification accuracy as a measure of
quality, as has been previously implemented by other researchers
(e.g. Pal and Mather, 2005; Kuemmerle et al., 2009). In addition,
the kernel-parameter values given by other studies where SVM had
been performed using TM data and the suggestions for the param-
eterization of these values for the different kernels given in the
ENVI Software User’s Guide (ENVE User’s Guide, 2008) were also
taken into account in parameterizing each kernel function. Com-
mon parameters which were set for all the selected kernels were
the penalty parameter, the pyramid levels and the classification
probability threshold value. The penalty parameter was set in all
cases to its maximum value (i.e. 100), forcing all pixels in the train-
ing data to converge to a class. The pyramid parameter was set to
a value of zero for all kernels, causing the Landsat TM image to
be processed at full spatial resolution. A classification probability
threshold of zero was also applied, restricting all image pixels to
get exactly one class label, and no pixels to remain unclassified. For
the � parameter a value equal to the inverse of the number of the
spectral bands of the Landsat TM imagery was specified each time
(here equal to the value of 0.250 and 0.167 for the case of the selec-
tion of four and six spectral bands of Landsat TM, respectively). The
bias in the kernel function required in the polynomial and sigmoid
kernels was set in both cases equal to one, while in the polynomial
kernel the degree of kernel polynomial was set equal to two.

4.3. Accuracy assessment

Classification accuracy was assessed based on the classifica-
tion accuracy statistics, namely the error matrix (user/producer’s
accuracy and omission/commission error), overall accuracy and
kappa statistic (Congalton and Green, 1999). Overall accuracy pro-
vides a measure of the overall accuracy of the classification and
is expressed as percentage (%). The kappa statistic is a measure of
the difference between the actual agreement between reference
data and the classifier used to perform the classification versus the
chance of agreement between the reference data and a random
classifier. This parameter takes values between 0 and 1, where val-
ues greater than 0.80 represent generally a very good agreement
between classification map and reference data. Producer’s accuracy
indicates the probability that the classifier has correctly labeled
an image pixel whereas the user’s accuracy expresses the prob-
ability that a pixel belongs to a given class and the classifier has
labeled the pixel correctly into the same given class. Commission
error (expressed as %) is derived by differentiating the user’s accu-
racy (also expressed as %) from 100, whereas the omission error
(%) is computed by differentiating the producer’s accuracy (%) from
elineation from a uni-temporal perspective based on Landsat TM
th Observ. Geoinf. (2010), doi:10.1016/j.jag.2010.06.008

100. In the present study, validation of the classification maps pro-
duced from the SVM implementation was performed against the
set of validation pixels for each class collected following the proce-
dure described earlier in the pre-processing phase (see Section 4.1).
In addition to the classification statistics, the SVM-derived burnt

dx.doi.org/10.1016/j.jag.2010.06.008
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rea estimate was also compared against the Risk-EOS burnt area
stimate which had been acquired. Analogous studies perform-
ng comparisons of different burnt area estimation methods versus
isk-EOS estimates have been available in the past by Zammit et al.
2006) and recently by Kontoes et al. (2009).

. Results and discussion

.1. SVM overall classification performance

SVM classification of the post-fire Landsat TM scene resulted in
he generation of the thematic maps of land use/land cover shown
n Fig. 4 in which the burnt area class is depicted in red. The results
btained for the different classification experiments shown in Fig. 4
re summarised in Table 1. Generally classification of the Landsat
M data with the SVM using either the first four (i.e. TM1, TM2,
M3 and TM4) or all the reflective bands of the image, provided
ood results for each kernel function used in terms of the over-
ll accuracy and kappa statistic. Both overall accuracy and kappa
tatistic were always higher than 93% and 0.920, respectively for
ll thematic maps produced. User’s and producer’s accuracy of the
ndividual classes was also generally very high for all classifica-
ions, in all cases higher than 79 and 81%, respectively. In terms
f the individual land cover classes results, user’s and producer’s
ccuracies obtained (Table 1) showed a clear separation of the for-
st, and burnt area classes in all classification scenarios performed,
hereas for the linear kernel in particular, clearly separable was

lso the urban fabric/bare soil class. The scrubland/herbaceous veg-
tation and the agricultural areas classes generally exhibited the
owest classification accuracy in all classification scenarios. How-
ver, even for those two classes, high enough and fully acceptable
rom an operational point of view application as the classification
ccuracy achieved ranges from 82 to 95%. The lower classification
ccuracy of the scrubland/herbaceous vegetation and the agricul-
ural areas classes could be probably related to the generally low
pectral separability of those two classes in the TM imagery. This
as evidenced in all the separability index computation performed
uring the selection of the training and validation points, for both
hen the four and six TM spectral bands were considered (see Sec-

ion 4.1 and Fig. 2). Use of all the reflective Landsat TM channels
n the SVM implementation also improved the separation of the
rban/industrial areas class in all kernels used. Nevertheless, train-

ng points selection was not influential to the classification results
btained, as if this was the case then the confusion matrix pro-
uced would not allow obtaining such high user’s and producer’s
ccuracies for each class.

As regards the effect of kernel function selection to the SVM
lassification applied to the TM imagery, results generally showed
mall differences in the overall classification. Both when only the
our and all sensor bands are employed in the SVM classification,
he linear and polynomial kernels are producing somewhat higher
lassification accuracy, in comparison to the RBF and the sigmoid
ernels. If only the four TM bands are used in the classification,
hen the RBF is producing generally equally good results to those
f the linear kernel, whereas in the case where all the reflective TM
ands are used in classification, the polynomial kernel is produc-

ng after the linear the higher classification results from all kernels
ompared herein. Zhu and Blumberg (2002) using ASTER imagery
cquired for a site in Israel reported generally very close results
n the SVM classification accuracy when either the polynomial or
Please cite this article in press as: Petropoulos, G.P., et al., Burnt area d
imagery classification using Support Vector Machines. Int. J. Appl. Ear

he RBF kernel was used in classification. Results obtained herein
re generally in agreement with Dixon and Candade (2008), who
xamined the use of different kernel functions selection to the SVM
lassification performance using also TM data acquired for a site
n Florida, USA, and reported the linear and polynomial kernels to
 PRESS
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produce high overall classification accuracy and kappa statistic in
comparison to RBF kernel.

Use of different number of TM spectral bands in the SVM classi-
fication showed negligible differences in the overall classification
accuracies obtained for the different kernel functions used. At least
for this specific cases study, use of all the reflective TM bands some-
how slightly improved the overall classification performance of
the SVM when the linear and the polynomial kernel functions are
used, whereas the opposite happened when the RBF and sigmoid
functions are used. At this point it is worthwhile to note that, in
analogous study Pal and Mather (2005) using Landsat ETM+ data
and RBF kernel function reported an increase in the SVM classifica-
tion accuracy as the number of features (bands) increased, which
is in agreement with the results of the present study at least for the
results obtained from the linear and polynomial kernels. However,
in another study, Dalponte et al. (2009), using airborne hyperspec-
tral observations examined the influence of spectral resolution to
the SVM classification performance for two test regions in Italy
and reported a modest effect of number of spectral bands in the
classification kappa coefficient.

All in all, classification accuracies reported here are of similar,
or sometimes better, to those reported by other studies investigat-
ing the combined use of SVM classifier with TM imagery or with
other types of remote sensing data in a Mediterranean setting or
dissimilar ecosystems (e.g. Carrao et al., 2008; Yang et al., 2008;
Huang et al., 2008; Knorn et al., 2009; Kavzoglu and Colkesen, 2009;
Otukei and Blaschke, 2010; Dalponte et al., 2009). Classification
accuracy results reported herein are also of similar accuracy com-
pared to other studies deriving burnt area estimates from Landsat
TM based on other classification approaches using similar number
of classes in their classification (e.g. Sunar and Ozkan, 2001; Hudak
and Brockett, 2004; Quintano et al., 2006). Petropoulos et al. (2010)
investigated the potential value of Artificial Neural Networks (ANN)
and Spectral Angle Mapper (SAM) classifiers combined with TM
imagery for burnt area mapping for the same to here study region.
Authors reported an overall accuracy and kappa statistic of 90.29%
and 0.878 and of 83.82% and 0.795 in the ANN and SAM classifiers
implementation, respectively, which is lower to those obtained
here, suggesting that SVM can generally produce more accurate
classification when is combined with TM imagery.

Generally, the high accuracies obtained in the separability of
the different classes, including the burnt area, can be attributed
partly to the differences in the spectral properties between the
other classes and that of the burnt area, which were even more
evidenced in the Landsat TM middle infrared bands TM5 and TM7.
These bands are generally sensitive to discriminating vegetation
at varying moisture levels and burnt areas which were completely
open and had very low moisture levels. Also, it should be noted
that the imagery used in the present study was acquired during
the dry season, which is when the differences between the veg-
etation at different moisture content conditions and bare soil are
discriminated.

5.2. Burnt area delineation from SVM

Table 2 is summarising the total burnt area estimates and
their differences between the different classifications performed
for the same geographical area for which was available the burnt
area estimate from Risk-EOS. In addition, Fig. 5 depicts the spa-
tial agreement in the burnt area estimates between the Risk-EOS
and the SVM-based each time estimate for the different SVM
elineation from a uni-temporal perspective based on Landsat TM
th Observ. Geoinf. (2010), doi:10.1016/j.jag.2010.06.008

implementations performed herein. As regards the total burnt area
estimate, results showed moderate differences in its estimation by
the classification scenarios implemented, with an absolute differ-
ence ranging from 0.20 to 0.90 km2 in comparison to the burnt area
estimate reported by Risk-EOS. Total burnt area estimate produced

dx.doi.org/10.1016/j.jag.2010.06.008
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Fig. 4. (a) Thematic maps from the SVM classifier implementation to the TM imagery using only the first four sensor’s spectral bands (b) Thematic maps from the SVM
classifier implementation to the TM imagery using all the sensor’s spectral bands.

dx.doi.org/10.1016/j.jag.2010.06.008
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Table 1
Classification results obtained from the SVM implementation with the Landsat TM imagery for the different combinations of kernel functions and sensor’s spectral bands.

4 spectral channels of Landsat TM used

Kernel type Linear Polynomial RBF Sigmoid

Land cover classes Producer’s
accuracy (%)

User’s
accuracy (%)

Producer’s
accuracy (%)

User’s
accuracy (%)

Producer’s
accuracy (%)

User’s
accuracy (%)

Producer’s
accuracy (%)

User’s
accuracy (%)

Agricultural areas 84.75 92.59 84.75 92.59 84.75 92.59 83.05 90.74
Forests 100 100 100 100 100 100 100 100
Scrubland/herbaceous vegetation 94.12 85.71 94.12 85.71 94.12 85.71 90.20 83.64
Urban fabric/bare soil areas 98.08 98.08 98.08 98.08 98.08 98.08 100 98.11
Burnt area 100 100 100 100 100 100 100 100

Overall accuracy 95.89 95.87 95.89 95.87
Kappa coefficient 0.948 0.948 0.948 0.948

6 spectral channels of Landsat TM used

Kernel type Linear Polynomial RBF Sigmoid

Land cover classes Producer’s
accuracy (%)

User’s
accuracy (%)

Producer’s
accuracy (%)

User’s
accuracy (%)

Producer’s
accuracy (%)

User’s
accuracy (%)

Producer’s
accuracy (%)

User’s
accuracy (%)

Agricultural areas 86.44 94.44 84.75 92.59 84.75 92.59 81.36 84.21
Forests 100 100 100 100 100 100 100 100
Scrubland/herbaceous vegetation 94.12 85.71 92.16 83.93 92.16 83.93 82.35 79.25
Urban fabric/bare soil areas 100 100 100 100 100 100 100 100
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Burnt area 100 100 100

Overall accuracy 96.51 95.89
Kappa coefficient 0.956 0.948

rom the different SVM classifier scenarios was always lower in
omparison to that reported by Risk-EOS. Higher differences in total
urnt area estimates found in most cases when all the reflective
pectral bands of the sensor were employed in the SVM classifi-
ation scheme in comparison to when only the first four spectral
ands (i.e. TM1, TM2, TM3 and TM4) were used. The total burnt
rea estimate from the SVM implementation closer to that from
isk-EOS was that from the implementation of the SVM classifier
sing the polynomial kernel using the four only reflective bands
f the Landsat TM imagery (difference of 0.20 km2 or 0.42% from
isk-EOS). The next closer burnt area estimate to that of Risk-EOS
as that of the SVM classifier applied using the RBF kernel and also

he first four reflective TM bands (difference of 0.23 km2 or 0.48%
rom Risk-EOS). When all reflective sensor bands were included
n the SVM classification, the closer total burnt area estimate to
hat reported by Risk-EOS was when the linear kernel was used
difference of 0.32 km2 or 0.68% from Risk-EOS).

Clearly, the burn scar area shape was also generally similar
etween the different classifications (Fig. 5) and also with that
eported by Risk-EOS, suggesting a generally good spatial agree-
ent between the compared datasets. As clearly illustrated in Fig. 5,

ifferences in the burnt area estimates were found mainly in all
Please cite this article in press as: Petropoulos, G.P., et al., Burnt area d
imagery classification using Support Vector Machines. Int. J. Appl. Ear

ases mainly in the north and south parts of the burn scar and also
n some specific regions inside the perimeter of the burn scar. As
een from Fig. 5, areas identified as burnt by Risk-EOS in the south
art and inside the burnt scar envelope have been omitted by SVM

able 2
otal burnt area estimate from the SVM implementation with the Landsat TM imagery f
otal burnt area estimate obtained from the Risk-EOS service is also reported.

Kernel type 4 Spectral bands of
Landsat TM

Absolut
from Ri

Total burnt area (km2) (km2)

Linear 46.86 0.60
Polynomial 47.06 0.20
RBF 47.03 0.23
Sigmoid 46.81 0.45

RISK-EOS total burnt area estimate 47.26
100 100 100 100 100

95.87 93.67
0.948 0.920

in all scenarios, thus correspond to representing omission errors
by SVM classification. Similarly, in the north part of the burnt area
areas have been falsely identified by SVM as burnt areas, represent-
ing commission errors of the SVM burnt area classification. A visual
inspection of these misclassifications with the originally acquired
TM imagery and also with the CORINE 2000 land nomenclature map
indicated that most of the omission errors observed in the south
region and inside the area of the burn scar envelope are associ-
ated with different types of forested area, whereas the commission
errors observed in the north region mainly with agricultural areas
that covered this region. Results obtained at least for this specific
case study, also generally indicate that selection of any combination
of spectral bands and the kernel function has a generally modest
impact to the delineation of the burnt area estimate from the Land-
sat TM imagery. This is in agreement to the findings from the overall
classification accuracy assessment performed earlier (Section 5.1).

Differences in the burnt area mapped may be related to the
responses of different land cover/use types during the fire evolu-
tion and also after the fire suppression, which might be related also
to the degree of biomass burning severity from the fire passing (e.g.
Smith et al., 2007). For example, surface fires over forested regions
generally burn totally the understory and do not burn the top of the
elineation from a uni-temporal perspective based on Landsat TM
th Observ. Geoinf. (2010), doi:10.1016/j.jag.2010.06.008

forest trees canopy due to the speed by which those are progressing,
and as a result those regions are not identified as burnt in satellite
imagery (omission errors). What is more, misclassification errors of
land surface cover types having similar spectral characteristics as

or the different combinations of kernel functions and sensor’s spectral bands. The

e difference
sk-EOS

6 Spectral bands of
Landsat TM

Absolute difference
from Risk-EOS

Total burnt area (km2) (km2)

46.94 0.32
46.63 0.63
46.66 0.94
46.40 0.86

47.26

dx.doi.org/10.1016/j.jag.2010.06.008
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Fig. 5. (a) Comparisons of the results from the various kernels using the different number of spectral bands of the Landsat TM imagery. With the blue is the area identified
as burnt only from the SVM classifier using the first four bands of the TM imagery, with red the burnt area estimated from Risk-EOS which was not identified as burnt from
SVM implementations, whereas with green the commonly identified burnt area between the SVM scenarios implementation and Risk-EOS. (b) Comparisons of the results
f at TM
u from
w entati
t

b
t
s
h

rom the various kernels using the different number of spectral bands of the Lands
sing all the reflective bands of the TM imagery, with red the burnt area estimated
ith green the commonly identified burnt area between the SVM scenarios implem

he reader is referred to the web version of the article.)
Please cite this article in press as: Petropoulos, G.P., et al., Burnt area d
imagery classification using Support Vector Machines. Int. J. Appl. Ear

urnt areas, even so given the high degree of vegetation fragmen-
ation and heterogeneity that exists in Mediterranean ecosystems,
uch as that used in the present study. For example shaded areas
ave generally shown to have similar spectral signatures to those
imagery. With the blue is the area identified as burnt only from the SVM classifier
Risk-EOS which was not identified as burnt from SVM implementations, whereas
on and Risk-EOS. (For interpretation of the references to color in this figure legend,
elineation from a uni-temporal perspective based on Landsat TM
th Observ. Geoinf. (2010), doi:10.1016/j.jag.2010.06.008

of burnt areas (Tanaka et al., 1983; Pereira et al., 1997). Last but not
least, differences in the total burnt area estimates can be attributed
to the differences in the spatial resolution between the burnt area
maps produced from the TM sensor (at 30 m spatial resolution)

dx.doi.org/10.1016/j.jag.2010.06.008
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nd the reference burnt area estimate which had based on SPOT XS
magery analysis (20 m spatial resolution), which can be even more
ignificant in regions with high degree of vegetation fragmentation.

Results from the present study are also comparable in terms
f the burnt area detection to other studies carried out previously
ut with different types of satellite datasets. Zammit et al. (2006)
pplied a binary (burnt/sunburnt) SVM classification using SPOT5
ultispectral imagery acquired for a site in southern France and

heir validation against Risk-EOS observations indicated generally
verall classification accuracy higher than 98%. In a similar study,
ao et al. (2009), also applied a binary SVM classification scheme

or burnt area retrieval from MODIS Terra imagery and validations
hich they performed for a test site between Mogolia and China

ersus burnt area estimates acquired from TM imagery, showed an
verall accuracy of 96.8% and a kappa statistic of 0.933. Petropoulos
t al. (2010), recently for the same test site used in the present study
valuated the combined use of TM imagery with ANN and SAM
lassifiers and reported absolute differences from the Risk-EOS of
.52 km2 (or equivalently 1.1%) and 2.38 km2 (or equivalently 5%)
or the ANN and SAM, respectively. In comparison to their results,
esults obtained in the present study using the SVM classifier were
f closer agreement to the Risk-EOS estimate, suggesting that SVM,
t least for this specific case, performs better than ANN or SAM
lassifier when combined with TM imagery. All in all, burnt area
stimated from the combined use of SVM with the TM imagery
enerally produced very close estimates to those of Risk-EOS, both
n terms of absolute total burnt area values and of the spatial
greement of the burnt area cartography. This is a very impor-
ant finding from an operational point of view of using the SVM
lassifier in burnt area mapping, given that the Risk-EOS estimates
ad been based in the analysis of higher spatial resolution SPOT5

magery assisted by very high resolution IKONOS imagery photo-
nterpretation and field visits performed in the studied region.

. Conclusions

The present study was concerned with the evaluation of the
otential of combined use of SVM classifier with Landsat TM

magery for obtaining burnt area mapping in a Mediterranean set-
ing.

Evaluation of the performance of the SVM classifier in delineat-
ng burnt areas on a Landsat TM scene for this specific fire event

as based on standard classification accuracy assessment met-
ics (Congalton and Green, 1999). Additional comparisons of the
erived burnt area maps were also performed against the Risk-
OS operational service estimate corresponding to this specific
re, derived from the implementation of an NDVI-threshold algo-
ithm to SPOT4 XS (20 m spatial resolution) imagery combined with
ery high spatial resolution IKONOS photo-interpretation refine-
ent applied at a post-classification stage. Implementation of the

VM using different kernel functions as well as spectral band com-
inations of Landsat TM imagery acquired very shortly after the
re suppression showed a high overall classification performance.
verall classification accuracy ranged from 93 to 96% and a kappa
oefficient varied from 0.920 to 0.956, respectively. Overall, these
esults were in agreement with other studies in which the SVM
lassifier has been combined with Landsat TM/ETM+ in various,
ot burnt area mapping-specific classification problems (Kavzoglu
nd Colkesen, 2009) or with other works investigating the retrieval
f burnt area estimates from Landsat TM (Quintano et al., 2006).
Please cite this article in press as: Petropoulos, G.P., et al., Burnt area d
imagery classification using Support Vector Machines. Int. J. Appl. Ear

nalysis of the effects of the number of spectral bands and of the
ifferent kernel functions on the SVM-based classification accu-
acy indicated, at least for the present study, no significant change
o the overall classification accuracy. However, an improvement in
he agreement between the Risk-EOS total burnt area estimate and
 PRESS
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that derived from the implementation of the different kernels was
observed when all the Landsat TM bands were employed in the
SVM only when the linear kernel was used.

Although this study has been restricted to illustrating the ability
of Landsat TM sensor in burnt area mapping of a single fire event,
the results confirmed the potential of the SVM classifier combined
with Landsat TM satellite imagery for performing rapid and cost-
effective fire analysis of regional scale (∼1:50,000) fire episodes
to other Mediterranean like ecosystems. Furthermore, results from
the present work may have practical applications from the point
of view of the use of the 30 m spatial resolution of the freely dis-
tributed Landsat TM imagery coupled with the unique properties
of SVM classifier for supporting, and even complementing, exist-
ing burnt area monitoring methods operated by civil protection
and other agencies (e.g. Risk-EOS, EFFIS), providing “validated” rel-
evant observations, often in the form of regional-scale products.
What is more, the SVM-based classification provided high classi-
fication results in overall, evidencing the potential of the method
for an all-inclusive land use/land cover mapping. Results from this
study also suggested that even in a complex classification scheme,
SVM classifier can delineate accurately the burnt area, provid-
ing results of burnt area that are not minimally based in creating
masks of burnt/non-burnt area, as is the norm by other studies per-
formed previously (Zammit et al., 2006; Cao et al., 2009; Kontoes
et al., 2009). This is also important, as it indicates an encourag-
ing potential of the SVM method to be adopted towards other
classification-based applications.

Nevertheless, from an operational view angle, requirements of
the method in computing resources and computational time were
also very reasonable. However, the computational time in SVM
implementation when dealing with large datasets in terms of area
covered, and spectral and spatial resolution should be further inves-
tigated in the future as part of the examination of the full potential
of this technique for operational application. Also, from an opera-
tional perspective again, although the present results show a very
promising potential for using SVM in burnt area mapping, surely
further research is required towards the extension of the direction
of the investigation of the parameters creating the largest uncer-
tainty in the estimation of burnt area and of the SVM classification
accuracy in overall. An important direction of future work includes
a detailed investigation of the effect of different kernels parameter-
ization and at different implementation conditions. Furthermore, a
systematic research on the effect of additional spectral information
that can be derived from the original data (such as of the princi-
pal analysis components, the NDVI, NBR or texture bands created
based on spectral variances), which can perhaps assist in increasing
further the SVM overall classification performance, as well as the
detection of burnt areas from remote sensing data.
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