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Abstract
The present study aims to explore the potential and effectiveness of new Earth Observation data for mapping the vegetation composition and

structure and thus provide accurate forest maps to be used in fire propagation simulation models and fire risk assessment. Land cover classification

of ASTER and Hyperion images is performed in a detailed nomenclature including different vegetation types and densities since the same

vegetation type may give fires with different behaviour as a result of differences in fuel continuity.

The results suggest that both datasets can provide highly accurate maps with an overall accuracy of 85% for ASTER and 93% for Hyperion

classification. Although Hyperion is superior to ASTER in terms of overall accuracy, the latter provided a higher thematic accuracy identifying one

additional class compared to Hyperion. The evaluation of the classification results in terms of cost and technical characteristics suggest that both

datasets are suitable for use in wildfire management tools, depending on the specific user needs, and they could also be used complementary if a

combination of high thematic accuracy and locally high spatial accuracy is needed.

# 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Fire is an ecological factor with a long presence in the

Mediterranean region as well as in other regions with

Mediterranean type climate. Once an uncontrollable force of

nature and later tamed for use by humans, fire currently

constitutes a major ecological disturbance factor threatening

ecosystem sustainability but also an important management

tool for many ecosystems around the globe, such as Savannas

where fire forms a significant component of their ecology

(Bond and Keeley, 2005). Fire can be considered the largest

‘‘herbivore’’ on Earth with very broad dietary preferences

(Bond and Keeley, 2005) that determines the structure and

composition of vegetation in many regions of the world (Bond

et al., 2005).

Over the last five decades much attention has been paid on

the ecological impacts of fire, which are determined to a large

extent by fire behaviour. Fire behavior is of particular
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importance not only because fires with different behaviour

result in different ecological impacts, but also because it

determines the optimal suppression strategy of any given fire.

Thus, various efforts have been made to develop tools and

models that could assess, on the one hand, the risk of fire

accurately, and, on the other hand, the behaviour of a given or

potential fire (e.g. Rothermel, 1972; Keramitsoglou et al., 2004;

Vakalis et al., 2004a,b).

The two most important determinants of fire behavior are

fire intensity and rate of spread, and are both affected by, among

other factors, the type of fuel, the fuel load and the fuel

continuity (Whelan, 1995). Different species produce different

types of fuel with some species, such as Pinus halepensis, being

more flammable than others (Vakalis et al., 2004a) due to the

high content of flammable oils and resins, producing fires of

high intensity. The fuel load and fuel continuity are both related

to the percentage of the surface covered by vegetation and thus

by potential fuel (Whelan, 1995).

The effectiveness and accuracy of any tool to be used for fire

risk assessment or simulation of fire behavior depends on the

availability and accuracy of data related to the above ecosystem

properties, as demonstrated in the fire simulation models
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developed by Vakalis et al. (2004a,b). Thematically and

spatially accurate land cover maps and information on the

percentage of vegetation cover are thus critical for the

prevention and suppression of fire in fire-prone areas and

ecosystems.

Carlson and Burgan (2003) review users’ needs in

operational fire danger estimation and have discussed the

role of Earth Observation (EO) in determining fuel which

may also be used for fire propagation models. Multitemporal

series of vegetation indices, including NDVI, to monitor

vegetation stress have been used (Paltridge and Barber, 1988;

Lopez et al., 1991), whilst other researchers have used

thermal infrared data as an indicator of water stress in

vegetation (Vidal et al., 1994; Desbois and Vidal, 1996).

Other researchers have combined vegetation indices with

thermal data to estimate fire potential (e.g. Chuvieco et al.,

2004). Riano et al. (2002) used LandsatTM images to generate

fuel type maps at a spatial and temporal scale adequate for

operational fire management applications. It should be noted,

however, that even in cases of less dense canopies the

discrimination by the sole use of optical sensors becomes

difficult, especially between forest classes or forest and

shrubs classes representing similar spectral characteristics.

EO multispectral and hyperspectral sensors, such as ASTER

and Hyperion, have substantially increased the potential to

obtain timely, detailed and accurate information on land

cover. Indeed, the exploitation of their spectral capabilities

through application of various classification methods is

discussed in the literature with promising results. In the few

studies that utilise ASTER data, these have been used to

perform land cover classification using object-oriented

methods, and have produced satisfactory results (Kato

et al., 2001; Lewinsky, 2005). Nonetheless, in some cases

there are still difficulties in discriminating certain forest types

(Yamaguchi et al., 1998). However, up to now, researchers

have not paid enough attention to the potential of ASTER

data in fuel type and properties mapping. Recently,

Lasaponara and Lanorte (2007) showed that ASTER data

may provide a valuable tool for characterization and mapping

of fuel types achieving classification accuracy higher than

90% even for heterogeneous areas characterized by a

complex topography and mixed vegetation covers.

Goodenough (2002) compared forest classification accura-

cies between EO-1’s Hyperion and ALI sensors and Landsat 7

ETM+, and concluded that compared to Landsat, hyperspectral

sensors provide greater accuracies and better discrimination in

several forest types. In particular, Hyperion hyperspectral data

have been used to produce high operational accuracies for

forest mapping with different classification methods (Gomez-

Chova et al., 2004; Goodenough et al., 2002; Minguillon and

Serra-Sagrista, 2003; Benediksson and Kanellopoulos, 1999).

In this paper, we propose a comparative study between

ASTER and Hyperion data using the same coverage area,

training sets and classification method in order to evaluate their

accuracy, effectiveness, complementarity and relative advan-

tages for forest mapping as far as (i) vegetation type and (ii)

percentage of vegetation cover are concerned. The ultimate aim
is to provide a reliable map representing simultaneously

vegetation type and percentage coverage for use in a decision-

support system (DSS) during forest fire fighting. The pilot

application area is the forested east side of Mount Parnitha, in

the prefecture of Attiki, which includes the city of Athens

(Greece).

2. Materials and methods

2.1. Satellite images and pre-processing

Two satellite images were used in this study, namely one

ASTER image acquired in autumn 2003 (October 13) and one

Hyperion acquired in autumn 2004 (September 20). The

ASTER image provided scene coverage of 60 km by 60 km

whilst the Hyperion image covered 7.6 km by 86 km. Both

images were subset to a common area of interest covering

7.6 km by 25 km with 25 m pixel size and were geometrically

corrected and georeferenced to the Hellenic Geodetic

Reference System 1987 (EGSA87). ASTER data are recorded

in 14 spectral bands from visible to thermal infrared. Spectral

bands in the visible and near infrared (ASTER product

AST2B05V), and in the shortwave infrared (ASTER product

AST2B05S) were used for vegetation mapping.

Due to intense striping in several Hyperion bands,

particularly in the shortwave infrared spectral area, the

following processing was applied in order to reduce data

dimensionality, preserve useful spectral information and

minimize striping. For each spectral area, a first band

elimination was performed by visual inspection. Subsequently,

principal component analysis (PCA, Jensen, 1996) was

performed in order to retain bands that presented only random

noise. For these bands, the correlation matrix was calculated

and the less correlated bands were finally retained. In addition,

bands where random noise affected more than 5% of the total

number of pixels were excluded. The processing was performed

separately for visible, near infrared and shortwave infrared

spectral bands and 63 spectral bands were finally retained: 23 in

the visible, 12 in the near infrared and 28 in the shortwave

infrared. The retained bands were subsequently stacked to a

single file for further processing.

2.2. Classification

On the basis of the CORINE land cover (CLC) 2000

database (Heymann et al., 1993), the stratum ‘‘Forest’’

(according to the 1st hierarchical level of CLC) was extracted

from ASTER and Hyperion images for classification. Fig. 1a

shows a pseudo-coloured view of the ASTER image utilising

bands 2–3–4 whilst Fig. 1b presents Hyperion image with band

combination 24–45–117 for blue–green–red, respectively. Both

figures show the stratum ‘Forest’ for the common area covered

by ASTER and Hyperion scenes.

Classification was based on a supervised approach, which is

predicated upon training samples whose spectral characteristics

are known with certainty. A field campaign to the sampling

sections resulted in the collection of ground-truth samples, by



Fig. 1. (a) False colour composition of the ASTER image masked in order to only cover the study area (blue: band 2; green: band 3; red: band 4). (b) False colour

composition of the Hyperion image using the same mask (blue: band 24; green: band 45; red: band 117). (c) Classification map produced using the ASTER image. (d)

Classification map generated from the Hyperion image. Both classification maps use the same nomenclature and colours: maroon: aleppo pines; red: evergreen broad

leaved trees; yellow: firs; blue: coppice; pink: bare soil; green: grasslands.
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means of polygons and a detailed description of land cover. An

example of a sampling section is given in Fig. 2. These

polygons had a twofold role: part of them was used as training

samples to classify ASTER and Hyperion images, and the rest

as evaluation data for assessing the classification performances,

i.e., the final map products which will serve as input to fire
propagation models. The sampling sections covered 5.6% of

the total area taking into consideration the trade-off between the

size of each section and the distance between them. If the

sections are too small, it usually takes more time to travel

between the sections than to survey each of them. In addition,

the smaller the section, the less representative it is for the global



Table 1

Confusion matrices for ASTER and Hyperion classifications

Species Density Accuracy (%)

ASTER Hyperion

Fig. 2. A sampling section (in blue) of the ‘Forest’ stratum. On the left is the ASTER image with the digitised polygons and on the right the same polygons with their

properties related to vegetation cover and density (coded) in a GIS environment.
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vegetation population and the greater the variance between

sections. Based on the above criteria and taking into account the

budget restrictions, sampling between 5 and 6% of the total area

was considered adequate. It is noteworthy that this can be

considered as one of the highest rates used for operational

mapping. For instance, MARS project sampling was set at 2.5%

for agricultural areas and 1% for forest areas (Tsiligirides,

1998; see also Torrna and Harma, 2004, for CLC in Finland).

Four classes were defined according to the percentage of

vegetation cover: 0–25%, 25–50%, 50–75% and 75–100%, and

were coded as 0, 1, 2 and 3, respectively. The definition of the

above classes was imposed by the fire propagation model used

(Vakalis et al., 2004a,b) and was considered of enough detail to

represent the densities present in the area of study. In total, 12

vegetation and land-cover classes were identified in the satellite

scenes.

The training samples were digitized (Fig. 2), checked

thoroughly and modified accordingly to ensure homogeneity

within the polygons. Subsequently, a number of tests are

applied including:

Producer’s User’s Producer’s User’s

Aleppo pine 0 83.33 95.24 98.70 98.70
� e
llipses separability in feature space;

Aleppo pine 1 91.67 84.62 99.53 97.53
� tr
ansformed divergence (Jensen, 1996); and

Aleppo pine 2 45.45 93.75 96.97 97.97
� c

Aleppo pine 3 97.18 85.19 98.25 98.20

Coppice 0 99.11 98.80 90.16 64.29

Coppice 1 70.00 92.90 92.45 92.45

Coppice 2–3 77.78 77.78 60.20 99.14

Evergreen

broad leaved

2–3 73.81 65.96 96.88 96.88

Fir 0 95.00 90.48 85.71 85.71

Fir 3 97.52 84.38 75.00 85.71

Bare soil – 98.50 98.50 80.00 72.73

Grasslands 3 100.00 100.00 – –

Density numbers correspond to 0 = 0–25%, 1 = 25–50%, 2 = 50–75%, and

3 = 75–100% of vegetation surface coverage. Classes with density numbers

2–3 correspond to a merged class of densities 2 and 3.
ontingency matrix, which is similar to Conglaton’s (1991)

confusion matrix, but was applied here only to the training

pixels.

Classification was performed according to the parametric

maximum likelihood algorithm (e.g. Schowengerdt, 2007).

This same method was applied to both data sets in order to

obtain comparable results. A majority 3 � 3 kernel was

subsequently applied in order to create a context-based

classification to reduce undesirable noise.

The basic principle followed during the classification was

that the output should include both vegetation types and
densities. However, in cases where density classes could not be

separated they were merged and named appropriately. For

instance, class ‘‘Coppice density 2’’ was spectrally confused

with ‘‘Coppice density 3’’. These two classes were, therefore,

merged in one, namely ‘‘Coppice densities 2–3’’.

3. Results

Classification maps resulting from both datasets are shown

in Fig. 1. Fig. 1c and d show the maps produced using ASTER

(Fig. 1a) and Hyperion (Fig. 1b), respectively. In terms of

vegetation type and cover the results are presented in Table 1.

The total accuracy of each image is evaluated by means of

overall performance and kappa statistics. The accuracy results



Table 2

Overall classification results for ASTER and Hyperion sensors

Sensor Number of

classes

Overall

performance (%)

Overall Kappa

statistics

ASTER 12 84.50 0.8212

Hyperion 11 92.59 0.9191
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for both classification experiments are presented in Table 2. The

overall accuracy of the maps shows that both classifications

present satisfactory results in terms of overall performance and

kappa coefficients. Hyperion classification with overall

classification accuracy of 93% over-performed ASTER

classification where an overall accuracy of 85% was achieved.

ASTER, however, identified one more class than Hyperion

(grasslands, covering 1.1% of the total area). The lower

thematic accuracy of Hyperion classification was probably due

to the limited training set for this particular class (small number

of training pixels) that seemed to be insufficient for Hyperion to

classify.

The classification accuracy was based on the ground-truth

data. Producer’s accuracy and user’s accuracy for each

vegetation type and density from the corresponding confusion

matrices are also shown in Table 1. Producer’s accuracy reflects

errors issued from the sampling data. User’s accuracy reflects

the percentage of correctly classified pixels. Both classifica-

tions present acceptable levels of accuracy.

The classification maps have been finally integrated into a

fire propagation model based on Vakalis et al. (2004a). By

replacing the existing forest maps with the new classification

products derived in the framework of this study the model

returned a fire simulation output that was more sensitive to fuel

variations at cell level and generated more irregular shapes in
Table 3

ASTER vs. Hyperion technical specifications and evaluation of suitability for map

Parameter ASTER

General

Satellite/sensor characteristics

Launch date December 1999

Spatial resolution Bands 1–3: 15 m; Bands 4–9: 25 m

Bands 10–14: 90 m

Temporal resolution 4–16 days

Spectral resolution 60–700 nm, 14 bands

Spectral range VIS, NIR, SWIR, TIR

Radiometric resolution 8 bits

Area covered by scene (swath) 60 km � 60 km

Stereoscopic observation Yes

Case study (data used)

Cost/time requirements

Cost for per km2 0.02 s per km2

Pre-processing Standard (resampling &

geometric correction)

Data 1 archived scene

Classification map

Overall classification performance 84.50%

Overall Kappa statistics 0.8212
response to these variations. This could be attributed to the fact

that the model input consisted of up-to-date detailed vegetation

maps of forest species and vegetation density types.

4. Discussion

ASTER and Hyperion imaging data have similar spatial

resolution, which indicates practically the same scales for

vegetation mapping. Classification gave satisfactory results in

both cases. However, Hyperion, due to its superiority in spectral

information, provided better classification accuracy results (see

Table 2) that exceeded 90%.

For both data sets the ability to discriminate vegetation type

and cover depends on the spectral characteristics of the species

and the size of the training set. The minimum number of pixels

required for a signature when using a maximum likelihood

classifier is the number of bands plus one. The minimum

number of pixels of a sample size used to estimate the mean

vector and covariance matrix for a N-dimensional normal

distribution is (N + 1), which is the necessary condition for the

matrix to be positive definite (ERDAS, 1997). As ASTER is a

multispectral and Hyperion is a hyperspectral sensor, it

becomes clear that it is easier to extract a reliable training

set for ASTER than for Hyperion. In this study, ASTER seemed

to be able to provide one more class with the limited training

samples. As a result, Hyperion required more intense sampling

in order to provide distinct classes of all vegetation types.

Despite the limitations of training samples, the classification of

Hyperion renders higher overall accuracy and minimum

spectral confusion in all cases of classes returned.

Table 3 summarises the ASTER versus Hyperion technical

specifications and their evaluation in terms of suitability for

forest mapping according to the methodology and the results
ping forested areas

Hyperion Advantage

November 2000

; 30 m ASTER

16 days ASTER

10 nm, 242 bands (196 effective) Hyperion

VIS, NIR, SWIR ASTER

12 bits Hyperion

7.7 km � 86 km ASTER

No ASTER

9–36 s per km2 ASTER

Standard (resampling & geometric correction) &

band and noise reduction

ASTER

1 scene after satellite programming –

92.59% Hyperion

0.9191 Hyperion
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obtained from this study. The comparison between the two

satellite sensors showed that ASTER images have lower cost,

they are faster and easier to process, they cover a larger area

within a single scene and they provide acceptable classification

accuracies (80–85%) in the framework of operational projects

that require costly field works for training (5–6% of the study

area). On the other hand, Hyperion has a higher data cost and

needs more computational time due to increased data volume

and inherent noise. However, whenever superior thematic

accuracy is required, hyperspectral data are the best choice or

they can be used as a complement in order to locally increase

classification accuracy. In the latter case, it is important to note

the necessity for additional and detailed field information. It is

also noteworthy that the two satellites overpass the same area

with an approximately 40-min time lag, which ensures that their

images can be acquired under the same atmospheric conditions,

thus increasing a synergistic use.

5. Concluding remarks

The current study explored the potential of using ASTER

multispectral and Hyperion hyperspectral satellite Earth

Observation data and methods for mapping vegetation

composition and structure that can become potential fuel in

a wildfire incident. The results suggest that both datasets can

provide highly accurate and easily updatable products, which

can be used as components in the various models and tools

developed for wildfire management. However, each of the two

satellite sensors presents certain advantages that may render it

more or less suitable or even complementary to one another

depending on the specific conditions.

Datasets and methods, such as the ones presented in the

current study, gain significant importance for wildfire manage-

ment due to the changing environment in which forest fires

occur as a result of the altered fuel properties as well as of the

climatic change. The fire suppression strategy, applied in most

fire prone areas for almost a century is thought to have

increased the fuel load (Dodge, 1972; Bonnicksen, 1980;

Minnich, 1983), increasing the risk of high intensity and more

difficult to control forest fires. Furthermore, the predictions of

climatic change, as reported by Christensen et al. (2007), for the

Mediterranean region suggest that summer temperature will

increase and precipitation will decrease, increasing the regional

aridity and the potential for more frequent, of higher intensity

and subsequently more catastrophic fires (Clark, 1988;

Mouillot et al., 2002; Pierce et al., 2004; Whitlock et al., 2003).

Under the situation of increased fuel load and increased

potential for intensive hot fires the development and use of

accurate tools for early assessment of fire risk and the potential

behaviour of fire is of particular importance. It could lead to the

adoption of appropriate measures for managing the most

vulnerable areas, towards decreasing the fuel load or

developing appropriate strategies for the effective suppression

of fire. Therefore, accurate fire propagation models can be used

in the operational support of forest fires suppression, in the

development of fire propagation scenarios, in the training of

volunteer fire fighters, in the planning of actions to be taken by
Civil Protection Agencies, and in the decision support of local

competent authorities.
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