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Summary
State-of-the-art Earth observation systems that provide very high spatial resolution
imagery have given ecologists a powerful tool to directly identify species, habitats and
other ecological units. At the same time, there is an urgent need for harmonised tools
and methods to evaluate status and trends in European habitats. Towards that goal,
the current work explores the applicability and transferability of an advanced pixel
window classifier applied on very high spatial resolution satellite imagery for fine scale
habitat mapping. The algorithm is tested on images of varying spatial resolutions
acquired over test sites designated for the NATURA 2000 list located in different
biogeographical zones. Algorithm application to Quickbird and IKONOS images gives
encouraging results, regarding both the overall accuracies and the level of class
hierarchy (habitats) identified.
& 2005 Elsevier GmbH. All rights reserved.
Introduction

At the World Summit on Sustainable Develop-
ment, Johannesburg, 2002, the Conference of the
Parties of the Convention on Biological Diversity
Strategic (CBD) Plan, including the target to
achieve, by 2010, a significant reduction in the
rate of biodiversity loss at the global, regional, and
5 Elsevier GmbH. All rights rese
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national level, was endorsed. Under the CBD,
European conservation organisations have obliga-
tions to ensure the conservation and enhance-
ment of habitats and species in both national
and international context. A major approach for
achieving this has been the establishment of a
system of protected areas providing a statutory
protection for sites including Special Areas of
rved.
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Conservation established under the EC Habitats
Directive and contributing to the NATURA 2000
network.

In Europe, there is an urgent need for harmonised
tools and methods to evaluate status and trends in
European habitats to achieve the objectives of the
European Community biodiversity strategy. One key
element would be an accessible Europe-wide geo-
referenced inventory of habitat distribution, status
and trends, and harmonised habitat and landscape
classifications, to deliver policy-relevant informa-
tion on the status and trends of biodiversity (Young
et al., 2004). The lack of consistent and up-to-date
information on location, extent and quality of
European habitats is a major constraint for the
implementation of European conservation strategy
(Weiers, Bock, Wissen, & Rossner, 2004). A strong
and consistent classification system is an important
tool in nature conservation to be able to monitor
species and ecological communities of interest that
are under threat so that they can be related to a
legal framework to ensure their protection. In
contrast with the long history of species classifica-
tion in Europe, the requirement for a classification
of habitats has only been identified in recent
decades and currently there are numerous na-
tional-level classifications in use (e.g. the National
Vegetation Classification in the UK; Rodwell, 1992).
More harmonised methods at the international
level are beginning to be developed (Rodwell
et al., 2003; Mucina, Rodwell, Schaminée, &
Dierschke, 1993). But in general terms, national-
level vegetation classifications use a range of
different parameters for classification, so that they
are not strictly comparable.

Furthermore, although traditional field-based
habitat classification and mapping techniques
might be thought to provide high accuracy in local
level applications, inter-surveyor error is an issue.
For example Cherrill and McClean (1999) found that
even when different surveyors used a standard
method applied widely within the United Kingdom
agreement between pairs of maps averaged only
25.6% of the study site’s area. Thus, quality control
and quality assurance are important but neglected
issues in ecological survey and habitat mapping.
Integrating remote sensing data, e.g. air photos,
with field survey has been identified as one way to
improve precision of field mapping (Cherrill &
McClean, 1999).

Remote sensing approaches are finding increasing
usage in combination with field-based survey for
habitat classification and mapping. Aerial photo-
graphs offer the advantages of generally good
availability, high quality and resolution and poten-
tial regional-scale coverage. Until a decade ago,
satellite imagery had been less used for terrestrial
habitat classification and mapping because of cost,
poor availability (e.g., in regions prone to regular
cloud cover) and low resolution. However, as
technology advances and availability issues are
overcome, there is potential for high spatial
resolution satellite imagery to contribute more
and more to conservation monitoring (Mehner,
Cutler, Fairburn, & Thompson, 2004; Kerr &
Ostrovsky, 2003; Turner et al., 2003; Read, Clark,
Venticinque, & Moreira, 2003; Mumby & Edwards,
2002; Nagendra & Gadgil, 1999).

The launch and subsequent acquisitions of the
IKONOS platform in 1999 have heralded a new era
by providing very high spatial resolution images.
The IKONOS panchromatic and multispectral bands
offer a spatial resolution of 1 and 4m, respectively.
In 2001 Quickbird was launched, fulfilling the
remote sensing community requirement for ima-
gery with spatial resolution of less than 1m (0.70m
in panchromatic mode). At these resolutions,
ecologists are able to directly identify certain
species (e.g. detection of individual tree crowns)
and species assemblages (Turner et al., 2003). To
date, however, very few studies have examined the
suitability of Quickbird images for mapping land
cover types. It is worth mentioning here that with
the improvement of spatial resolution, pixel-based
classifiers are prone to errors due to between-class
spectral confusion and within-class spectral varia-
tion for land cover studies (Barnsely & Barr, 1996).

This paper explores the applicability and trans-
ferability of an advanced pixel window classifier,
namely kernel based re-classification (KRC) algo-
rithm, applied to very high spatial resolution
satellite imagery for fine scale habitat mapping.
The algorithm is tested on images of varying spatial
resolutions (10–0.7m) acquired over test sites
designated for the NATURA 2000 list located in
different biogeographical zones.
Methodology

KRC algorithm was originally developed by
Barnsely and Barr (1996) for the urban environ-
ment. The KRC algorithm used in the present study
derives information on habitat classes in two
stages. The first step is to transform the original
multispectral image into a single channel image
using a pixel-based unsupervised classification. This
is performed using the Iterative Self-Organising
Data Analysis Technique (ISODATA) algorithm (Tou &
Gonzalez, 1974). The number of initial classes
depends on user’s choice but usually six to 12
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classes are sufficient. The purpose of the initial
classification is to highlight the spectral classes of
the image (e.g. water, trees), not the information
(thematic) classes such as riparian woodland, which
consists of two spectral classes, namely water and
trees, in a particular arrangement and frequency of
occurance. Unsupervised classification offers a fast
and efficient way to achieve this. However, in other
studies supervised classification has been used (e.g.
Barnsely & Barr, 1996). The KRC is then applied to
the initially classified image.

KRC examines labels of adjacent pixels within the
square kernel and calculates the so-called adja-
cency-event matrix, accounting for the spatial
arrangement and frequency of the labels. Criterion
for pixel re-labelling is the degree of matching
between the adjacency event matrix and the
Template Matrices produced during training. Thus,
the algorithm accounts for texture and spectral
components of the information classes. The func-
tionality and performance of the classifier can be
found in the original paper of Barnsely and Barr
(1996).

The accuracy assessment of KRC product is based
on two factors: (a) the mean post-classification
probability, which is a measure of the similarity
between the cluster centred at each pixel and the
training clusters and (b) a confusion matrix using
the accuracy assessment functionality of ERDAS
Imagine (version 8.6).

The common nomenclature used for this study is
the European Nature Information System (EUNIS)
(Davies & Moss, 2002). EUNIS was developed by the
European Environment Agency (EEA) to facilitate
harmonised description and collection of data
across Europe through the use of criteria for habitat
identification. It is a comprehensive pan-European
system, covering all types of habitats from natural
to artificial, from terrestrial to freshwater and
marine habitats types. Therefore, the results from
the different resolutions and different test sites
can be compared. In addition the level of habitat
classification can be assessed in a consistent
manner.

The following section describes the application
of KRC algorithm to different NATURA 2000 test
sites.
Wye Downs national nature reserve, UK

Description of test site

Wye Downs is the most easterly NNR in England
and comprises a part of the complex of steep scarp
slopes and dry valleys known as the North Downs
(latitude: 511090N, longitude: 01580E). The primary
conservation objective is to maintain one of the
best remaining examples of chalk downland (cal-
careous grassland) in Kent, a habitat which has
declined markedly in the last 50 years due to
modern farming methods. The reserve covers about
100 ha, half of which is mixed deciduous woodland
and the remaining half grassland. Due to the close
proximity of Kent to the continental European
mainland, the calcareous grassland is rich in wild
flowers with a pronounced Southern Continental
element including 17 species of orchids. The
species-rich sward is the product of traditional hill
grazing by sheep and cattle, although in recent
decades undergrazing has resulted in an increase of
coarse grasses and scrub.
Available data

A pan-sharpened product of a panchromatic and
a multispectral Quickbird image is used for the
application of the method. The image was acquired
on 9 December 2002 at 10:31 a.m. The panchro-
matic band covers a spectral length of 450–900 nm
at a spatial resolution of 0.7m while multispectral
image consists of four bands (blue: 450–520 nm;
green: 520–600 nm; red: 630–690 nm; near-IR:
760–900 nm) at a spatial resolution of 2.7m. The
two images are merged using a Smoothing Filter-
based Modulation Approach (SFIM), (Liu, 2000), and
a pan-sharpened product with a spatial resolution
of 0.7m is produced at a subset of the image
covering the test site (total size of approximately
1.5 km2). SFIM is found to be the most appropriate
technique for resolution merge of Quickbird data
since the four bands of the pan-sharpened product
had a correlation with the original multispectral
ones of more than 96% in all cases. The pan-
sharpened image is geometrically corrected using
Land-line data (1:2500) to a spatial accuracy of
1m. The very high spatial resolution of the image
gives a fine working scale of 1:2500.

The date and especially time of image acquisition
affects image quality. The acquisition date in
December makes the distinction between different
broadleaved woodland habitats impossible, due to
the absence of foliage. Furthermore, the time of
the day (10:31 a.m.) imposed the most crucial
problem, as the low sun angle and the sharp relief
of the area resulted in extensive shadows on the
image. For that reason, the shadowed areas are
dealt as a separate class throughout the classifica-
tion process.
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Table 1. EUNIS classes present in Wye Downs test site
(UK)

Class
code

Class definition NVC code

E1.2 Perennial calcareous
grassland and basic steppes

CG4

E2.11 Unbroken pastures MG6
G1.A22 British [Fraxinus] [Acer

campestre]
W8a

[Mercurialis perennis] forests W8f
N/A Shadowed areas N/A

Table 2. EUNIS classes present at River Strymon Delta
at Lake Kerkini (Greece)

Class code Class definition

G1.112 Mediterranean tall galleries (key
species)

C1.32 Free floating vegetation of eutrophic
waterbodies

C1.34 Rooted floating vegetation of eutrophic
waterbodies

C3.5 Pioneer and ephemeral vegetation of
periodically inundated shores

G1.1 Riparian woodland
E5.4 Moist or wet tall herb and fern fringes

and meadows
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A set of ground truth data is necessary for
training the classifier for the three target classes
shown in Table 1, as well as for assessing the final
map accuracy. A Phase 2 habitat map composed by
English Nature in 1992 (P. Williams, personal
communication) following the UK National Vegeta-
tion Classification (NVC) nomenclature (Rodwell,
1992) and a field survey in May 2003 were used as
ground truth data. Table 1 gives a conversion table
from NVC nomenclature to EUNIS.

Selection of training samples

The pan-sharpened image is originally classified
into ten classes. Subsequently, the extraction of
training clusters is performed, taking into account
the ground-truth data. For each class in Table 1,
five training samples were selected to depict the
representative pixel arrangements. Following the
selection of the appropriate training clusters, the
KRC is carried out. The kernel size is set at 9� 9
pixels, and training clusters at 50� 50 pixels. The
threshold value for pairs correlation is set at 0.70.
Delta of River Strymon, Greece

Test site description

River Strymon’s delta is located at Lake Kerkini, a
wetland ecosystem of international importance
(Ramsar Convention, NATURA 2000 proposed site,
IBA, etc.) located in Northern Greece (latitude:
421120N, longitude: 231090E). Lake Kerkini is a large
artificial freshwater lake created on the site of a
former natural swamp, after the construction of a
dam across River Strymon in 1932, primarily for
flood control. The lake receives a large quantity of
sediments from River Strymon. Following siltation
by river sediments, which led to a loss of 61% of the
lake’s storage capacity, and an increase in the
surface of irrigated land, it proved necessary to
build a new, higher dam and a new dyke to the west
in 1982. The purpose of the damming was flood
protection and the provision of water resources for
irrigation. The maximum depth of the lake is 10m
with an annual fluctuation of water level between
4.5 and 5m. The water level in the lake falls to a
minimum each year between September and
February and rises to a maximum level between
early May and early June. One of the most
important ecological features of the area around
the delta is the riparian forest and now consists
mainly of species of wild willow. It is the most
important habitat of the wetland not only for birds
but also for reptiles, amphibians and fishes. It is the
nesting and feeding habitat for many rare bird
species as well as spawning grounds for fish species.
Table 2 gives the classes present in the study area.
Class G1.112 is the riparian forest mentioned above
and is a key habitat. Classes C1.32 and C1.34 are
considered as one class (C1.3), since their spectral
signatures are identical.
Available data

The satellite image used for the present applica-
tion was acquired on 15 June 2000 by the IKONOS-2
satellite, which is on a sun-synchronous low Earth
orbit at a nominal altitude of 681 km and has a
revisiting capability of 3 days. The IFOV is such that
it collects images of the Earth with a very high
spatial resolution of 1 and 4m in the panchromatic
and multispectral modes, respectively. For the
purposes of our study, a sub-scene of multispectral
data of about 18 km2 centred at the delta of River
Strymon is used. The four IKONOS-2 multispectral
channels are tuned to detect radiation in the visible
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spectrum (450–530 nm centred in the blue,
520–610 nm centred in the green and 640–720 nm
in the red) as well as in the near infrared spectrum
(near-IR; 770–880 nm).

For the extraction of the training sets as well as
validation of classification results, a habitat classi-
fication map of the year 2000, conducted using
black and white orthophoto maps (aerial photo-
graphy, scale: 1:5000; date: 1997; source: Hellenic
Army Geographic Service) updated with field work
is used.
Figure 1. KRC Product in Wye Downs, UK.
Selection of training samples

The selection of training samples is carried out
by extracting representative sample areas of same
size (30� 30 pixels) from each EUNIS class of
Table 2. It has to be noted that the current version
of KRC does not allow variable training cluster size.
The training samples for KRC are extracted from
the initially classified image. Following the selec-
tion of the appropriate training samples, the KRC
software is executed. The kernel of 9� 9 pixels is
chosen in order not to deteriorate the classified
image by eliminating objects of smaller size. The
threshold value of the similarity index is set to
0.75.
Results and discussion

Wye Downs national nature reserve, UK

Map product and accuracy assessment
The classified Quickbird image over Wye Downs is

presented in Fig. 1. The resulted classes appear as
rather homogenous objects and the salt and pepper
effect usually resulting from pixel-based classifiers
when applied to VHSR images is reduced signifi-
cantly. Despite the homogeneity of the classes,
detailed information required at a finer working
scale, such as scrub encroachment in grasslands, is
still preserved. The patchiness shown mainly in
class G1.A22 is the result of ground reflection due
to the absence of tree foliage – a problem that
would have been absent from an image from the
active growing period.

In order to assess the accuracy of the produced
map, one hundred points were selected across the
classified image stratified according to the size of
the resulted classes and randomly located within
each class. The overall classification accuracy as
well as the accuracy in each class are used to
evaluate the performance of the method.
The mean post-classification probability, which is
the first measure of the method’s performance, is
82%, and is encouragingly high. The confusion
matrix results are shown in Table 3. The accuracy
is indeed high, especially if one takes into account
the absence of tree foliage and the rather
extensive shadow cover. The latter was a great
problem in identifying woodland habitats since the
absence of tree foliage caused a fine mosaic of
shadows across woodland canopy. KRC performed
very well in all identified classes as the users’
accuracy of 75%, 83.3%, 77.7% and 89.3% for classes
E1.2, E2.11, G1.A22 and Shadows, respectively
suggests. The identification of different grassland
types has been proven to be a difficult task when
the classification relies on spectral information
(Fuller, Groom, & Jones, 1994). The fact that KRC
performs so well without using any ancillary data,
such as soil or geology maps, is remarkable and
reveals the potential of the method for mapping
Atlantic grasslands.

The same area was also classified using an
object-based method (OBM; Bock, Xofis, Rossner,
Wissen, & Mitchley, 2005). Both methods performed
well reaching a correct classification rate of 480%
and the performance in individual classes was also
good in both methods. The OBM had the advantage
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Table 3. Error matrix and accuracy measures for the application of Kernel re-classification on Quickbird image*

Reference classes

E1.2 E2.1 G1.A22 Shadows Producers accuracy (%) Users accuracy (%)

E1.2 12 2 2 0 80.0 75.0
E2.1 0 10 1 1 55.5 83.3
G1.A22 3 6 35 0 85.3 79.5
Shadows 0 0 3 25 96.1 89.2

Figure 2. Subsets of the classified image using (a) kernel
size 9 and (b) kernel size 15.
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of integrating external knowledge which made the
classification of shadowed objects possible,
whereas with KRC this could not be done. On the
other hand, KRC gave a very good result with
limited input of external knowledge and was
quicker and less labour intensive than OBM.
However, OBM can be applied to large areas
irrespective of the existence of large homogenous
areas (lacking texture), situations in which KRC
fails (see below).

Sensitivity to kernel size
The effect of different kernel size on the final

classification is assessed in the present study. Two
different sizes are applied: kernel size of 9 and 15
pixels. All the other parameters are kept the same,
namely class and training clusters and a threshold
value for pairs correlation of 0.80. A subset of each
of the two classified images is shown in Figs. 2(a)
and (b) for kernel size of 9 and 15 pixels,
respectively. The two classification products were
thematically evaluated and they are discussed on
the basis of the suitability of the resulted habitat
maps for conservation and monitoring purposes.
Large kernel size (15) tends to result in more solid
classes, which is particularly obvious at points A, C
and D in the two images. This effect can be
beneficial in cases such as point D where the
patchiness shown in the image does not really
reflect the natural vegetation pattern but is rather
the result of the reflection from the ground due to
the date of image acquisition; mid-December when
there is no foliage in the deciduous tree canopy. On
the other hand, the solid classes may obscure
significant information, as is the case at points A
and B in the two images. At point A in Fig. 2(a)
(kernel size 9), a large area is shown as covered by
either E1.2 or E2.11 (grassland), however in (b)
(kernel size 15) the area is shown as G1.A22
(woodland) and according to the ground truth data
the former is correct. At point B the classification
shown in image (b) (kernel size 15) obscures the
invasion of E1.2 calcareous grassland, by G1.A22
woodland, which is of significant importance for
the conservation goals of this particular area,
maintaining open calcareous grassland with only
limited woodland/scrub mosaics.
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For this study a kernel size of 9� 9 pixels was
selected as the most appropriate one due mainly to
the fact that it preserves information related to the
invasion and subsequently degradation of the
sensitive and important habitat of calcareous
grasslands from a biodiversity viewpoint. If, how-
ever, the objective is to create a land use map
where that level of detail is not needed then a
larger kernel size resulting in homogenous classes
would be more appropriate.

Delta of River Strymon, Greece

The re-classified image, which is the final
product of KRC is shown in Fig. 3. In order to
investigate the performance of the kernel classifier
in terms of better class discrimination and overall
accuracy, the confusion matrix was computed. This
was based on stratified random selection of pixels
and provides a comparison between the re-classi-
fied image and the ground-truth map. The confu-
sion matrix is presented in Table 4. The overall
performance is 71%. Comparison between the
produced map and the ground-truth data in a
pixel-by-pixel fashion gives lower overall accuracy;
this is also attributed to the inclusion of transitions
from homogeneous to spectrally variable areas
Figure 3. KRC Product for Delta of River Strymon in Lake
Kerkini, Greece.

Table 4. Error matrix for the assessment of Kernel based r

Reference classes

G1.112 C1.3 C3.5 G1.1

G1.112 14 2 3 3
C1.3 2 9 1 0
C3.5 2 4 35 0
G1.1 1 0 1 9
E5.4 0 1 0 1
(sometimes referred to as ‘the boundary effect’;
Gong, Marceau, & Howarth, 1992) as well as along
the river. The latter is due to the absence of
training clusters because of the object size and
shape. The column ‘Other reference class’ of Table
4 refers to the cases where the particular class of
the pixel was not included in the classification. This
was very limited and mainly due to the size of the
objects representing the class, for instance along
the river, where no training cluster could be
defined. The individual class performance was
60%, 64%, 83%, 81% and 40% for G1.112, C1.3,
C3.5, G1.1 and E5.4, respectively. Since some of
these classes vary strongly with season, it is
expected that the overall result will be enhanced
once an image acquired in late summer or begin-
ning of autumn is included in the analysis.

SW Toulouse – a case where KRC did not work

KRC gives valid results when the scene to be
mapped contains spectral variation as well as
texture. Therefore, very high spatial resolution is
required. In order to exploit the limits of the
approach, KRC was applied on SPOT data of a test
site located in south-west of Toulouse, France. A
SPOT-5 image of 29 September 2002 was used. The
multispectral image had a spatial resolution of
10m. After the initial classification was completed,
training sets were defined on the classified image.
However, the classes are robust and homogeneous.
The extraction of appropriate training clusters for
the subsequent KRC confirmed the homogeneity of
the classes. Therefore, the homogeneity of the
area, together with the spatial resolution of the
image used (10m), made KRC not applicable in this
case.
Conclusion

This paper studies the applicability of KRC
algorithm and its transferability to different spatial
e-classification of IKONOS-2 image*

E5.4 Other Prod Acc (%) Users Acc (%)

0 1 73.7 60.9
1 1 56.2 64.3
0 1 89.7 83.3
0 0 69.2 81.8
4 4 80.0 40
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resolutions and biogeographical regions. In parti-
cular, the results of KRC application to Quickbird
and IKONOS very high spatial resolution images of
different test sites are encouraging. The overall
accuracies attained are 82% and 71%, respectively,
whilst the level of class hierarchy reached ranged
from EUNIS level 1 to level 5. However, the
algorithm did not work for the French case study
using SPOT-5 images due to the coarser resolution
as well as the lack of texture in the area. It appears
that the finer the spatial resolution the better the
performance of the classifier. This highlights the
constraint of the algorithm transferability to highly
homogeneous regions and/or to the classification of
satellite images of spatial resolution less than 10m.

Different kernel sizes result in different map
products. The higher the kernel size the more solid
the resulting classes which may sometimes obscure
information. The selection of the most appropriate
size depends on the aim and future use of the
output.

One of the main advantages of the method is that
it is automated and therefore not labour intensive.
The only stage in which the user intervenes is in the
selection of the training set. On the other hand, the
user does not have full control of the output
product and requires additional image processing
software for image display and initial classification
steps. Having control on the final output might be a
desirable feature in situations where the spectral
and texture information is poor, e.g. shadow cover,
but it may also lead to significant bias and
misclassification error when the information used
are either spatially or thematically inaccurate
(Bock et al., 2005).

The results from this paper suggest that very high
spatial resolution satellite imagery can play an
increasing role in mapping and monitoring NATURA
2000 sites in the coming decades. As technology
improves remote sensing methods can be cost-
effective compared with alternative field survey
methods when effectiveness is defined as overall
map accuracy (Mumby, Green, Edwards, & Clark,
1999).
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