RECOGNITION AND INVENTORY OF OCEANIC CLOUDS FROM SATELLITE
DATA USING AN ARTIFICIAL NEURAL NETWORK TECHNIQUE

G. G. Wilkinson, C. Kontoes and C. N. Murray

Institute for Remote Sensing Applications
Joint Research Centre
Commission of the European Communities
21020 Ispra, Varese, ltaly.

Paper presented at:

International Symposium on Dimethylsulphide, Oceans, Atmosphere and Climate,
held at Hotel Villa Carlotta, Belgirate, Italy, 13-15 October 1992.

Organised by the Joint Research Centre of the Commission of the European Com-
munities, Ispra, Italy.



RECOGNITION AND INVENTORY OF OCEANIC CLOUDS
FROM SATELLITE DATA USING AN ARTIFICIAL
NEURAL NETWORK TECHNIQUE

G. G. Wilkinson, C. Kontoes and C. N. Murray

Institute for Remote Sensing Applications
Joint Research Centre
Commission of the European Communities
21020 Ispra, Varese, ltaly.

SUMMARY

The use of satellite remote sensing provides the possibility for monitoring the
genesis and evolution of oceanic clouds. In order to link cloud genesis and di-
methylsulphide production it is necessary to develop a method for accurately
classifying and extracting the properties of cloud fields in imagery. An experi-
ment is reported in which an artificial neural network has been used to identify
the main types of clouds found in NOAA/AVHRR imagery of the northern
Atlantic ocean. The method is based on the use of an unsupervised pattern
recognition approach: the topological (or self-organising) map neural network.
Such a network has been trained with 362 examples of 40x40 cloud fields
extracted from imagery and has been used to provide 25 different cloud
classes.

1. INTRODUCTION

The Institute for Remote Sensing Applications of the Joint Research Centre
possesses a large dataset of daily raw satellite images from the NOAA Advanced Very
F.igh Resolution Radiometer (AVHRR) spanning more than a decade with coverage
over a significant portion of the eastern Atlantic Ocean [6°-30°E, 0°-40°N]. These
images with 4km. ‘Global Area Coverage’ resolution in 5 spectral channels (2 visible,
1 near infra-red and 2 thermal infra-red) have been used in the past to produce an
archive of sea surface temperature data for coastal upwelling studies. However in
principle this same raw dataset could be used also to categorise and make inventories
of clouds over the ocean. This could lead to studies of time trends and possible
linkages to cloud generation effects such as the phytoplankton-created
Dimethylsulphide (DMS).

In order to study possible links between DMS production and cloud generation or
modification, it will be useful to make accurate maps of cloud types and amounts over
the very long time period permitted by the JRC’'s AVHRR dataset. However the rec-
ognition and categorisation of clouds in satellite images is a non-trivial problern. The
visible channels of the AVHRR provide cloud reflectance information related to opti-
cal thickness and the infra-red channels provide brightness temperature information
which is related to cloud height. However the recognition of cloud types also depends



on their spatial textures which can also be extracted from imagery. The cloud recogni-
tion problem in satellite images is thus a difficult discrimination problem involving
multi-parameter pattern recognition. In our recent work at the JRC we have demon-
strated the potential value of artificial neural networks in recognition tasks of this
complexity e.g. for classifying complex satellite image data of land surfaces (1). Be-
sides their capability for solving complex pattern recognition problems, neural net-
works offer the additional possibility of direct encoding in parallel computer hardware
allowing very fast analysis of large data archives.

The application of neural networks to cloud classification is not new to this study and
has already been reported in (2) and (3). In both of these applications, neural net-
works have been used to carry out supervised classification. Examples of particular
image classes have been used to train an artificial neural network to encode the cloud
class characteristics. The network can then be used for classification. In the applica-
tions reported multi-layer perceptron networks were used based on the backpropaga-
tion training algorithm (4).

For oceanic cloud recognition however, for DMS studies, we have chosen a different
approach. The NOAA/AVHRR dataset provides a very extensive volume of images
from which training examples could be extracted. However instead of manually ex-
tracting and naming class examples, we have chosen an unsupervised neural network
approach to learn the characteristics of the main classes which can in principle be
extracted from the dataset. This is effectively a data clustering procedure -i.e. we al-
low the neural network algorithm to identify the most meaningful types of cloud fields
present in typical AVHRR imagery of the north east Atlantic Ocean. We do not wish
to make an arbitrary manual classification of clouds in the imagery at the beginning in
order to train a supervised classifier. If the unsupervised approach performs well, it
will be possible at a subsequent stage to label the prototype cloud classes derived by
the neural network approach and to use those prototypes as a basis for classification
of new cloud field data.

2. THE TOPOLOGICAL MAP NEURAL NETWORK

The T-Map neural netwerk algorithm (also called the self-organising map or Koho-
nen map) is an unsupervised pattern recognition technique (5), (6). For our applica-
tion it provides a relatively easy way of using both radiance and texture information
present in cloud field images.

The T-map consists of two layers of neural nodes. The first layer has one neuron
node per component of input feature vectors. The second layer is a two-dimensional
array of competitive neural nodes each of which will represent a prototype pattern
learned from a training data set. This second layer effectively becomes a ‘map’ show-
ing the natural relationships between the patterns that are given to the network.

All interconnections in the network go from the first layer to the second. The two
layers are fully interconnected, thus each node of the input layer is connected to all of
the nodes in the second (competitive) layer. Each interconnection has an associated
weight value -see figure 1.

The nodes in the second layer each form weighted combinations of the outputs from
the first (input) layer. Initially the weights between the nodes in the two layers are ran-
dom but they are progressively modified during an iterative training procedure to en-



code a mapping from the input feature space to the classification space. The weight
values are updated during the training procedure as follows:

Suppose an n-dimensional input feature vector E is fed to the n-node input layer of
the network and is denoted as:

E = {el, €9, eg, ..., € }

Let the set of weights W associated with the interconnections be denoted as:
w - {wil, W12, oo Win }

where ‘i’ denotes the ith. node in the competitive layer.

When pattern E is presented to the network the extent to which it matches the
weights associated with each node in the competitive layer is computed. The match
extent for node ‘i’ is E - W. Il which is the difference between the vectors E and
W.. The node in the competitive layer for which this value is the smallest is the win-
ner.

After the winning node has been identified a procedure is invoked to find the neigh-
bourhood around it denoted as N . This consists of nodes close to the winning node
‘c’. The size and shape of the neighbourhood can be selected by the user. Its size is
normally reduced as training proceeds. Weights are then updated for all neurons that
are in the neighbourhood of the winning node according to the equation:
Awij = oc(ej - Wij) if node ‘i’ is in the neighbouhood, otherwise Awij = 0, and
Wij new = Wij + Awij'

This adjustment results in the winning node and its neighbours becoming more like
the input pattern. The winner then becomes more likely to win if the same or a simi-
lar input pattern is presented at a later stage. The parameter ‘e’ is the learning rate
which is also normally decreased during the training process.
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Figure 1. Architecture of the topological map network.




As the training procedure runs, the weights associated with the output layer begin to
take on the characteristics of the main clusters of input feature vectors. Hence the
main types of cloud fields present in the dataset begin to emerge as prototypes.

For identifying cloud field prototypes we have used a 3200-component feature vector
(i.e. all pixel values in a 40x40 pixel window in both a visible and an infra-red chan-
nel) and have used a 5x5 array of nodes in the second layer to extract 25 prototype
cloud fields. Both spectral and spatial information are present in the input feature vec-
tors.

3. CLUSTERING CLOUD FIELDS USING THE T-MAP APPROACH

In order to extract the significant types of oceanic clouds which can be identified
in NOAA AVHRR imagery, a total of 362 sample cloud fields were extracted from
the JRC’s Atlantic Ocean dataset and used to train a T-map (7). The image data were
initially radiometrically calibrated and adjusted for solar zenith angle variations etc.
The T-map algorithm used in these experiments was provided by a commercial neural
network package ‘MIMENICE’ (Mimetics corporation) on a Sun SparcStation-2 com-
puter.

Figures 2 - 4 show the 5x5 array of prototype cloud fields at the second (output) layer
of the T-map. Figure 2 shows the output of the neural network before training -i.e. all
cloud prototypes are blank. Figure 3 shows the output of the neural network after 30
training iterations. Already at this stage the network has been able to extract quite
well the characteristics of 25 prototype cloud fields. Figure 4 shows the final cloud
field prototypes at the end of training after 1530 iterations through the training set.
The network has now learned the characteristics of 25 prototypes and very little
change was noted between the last few iterations prior to this. Each prototype is
shown as a pair of images- the one on the right is in a visible channel and the one on
the left is in a thermal infra-red channel. Figure 5 gives an interpretation of the net-
work output. These prototypes indicate the 25 most significant types of cloud fields
which can be extracted from a typical AVHRR dataset. The prototypes include cumu-
liform, stratiform and cirriform clouds.

4. CONCLUSIONS

Satellite remote sensing has the potential to allow us to monitor the genesis and
evolution of cloud patterns over large oceanic areas and through long periods of time.
At the present time, one of the greatest challenges in linking DMS production and
clouds is the problem of adequately identifying cloud types in satellite imagery and
measuring their properties and then establishing links with plankton data available
from other satellite datasets. Alongside the recognition problem there is the difficulty
of handling the large volumes of satellite data involved. Here we have shown that arti-
ficial neural networks, of the topological map type, can be used as a recognition tool
besides allowing us to process large datasets quickly. This research is still at an early
stage, but if the T-map can be used to pick out more classes of clouds with a greater
variety of properties, and if it can be encoded for parallel computing, then operational
use for application to the DMS problem will be possible.
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Figure 2. Prototype cloud fields from the T-map at iteration 0.
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Figure 3. Prototype cloud fields from the T-map at iteration 30.
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