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One of the most significant natural disasters which 
struck Greece in the 20th century was the 07/09/1999, 
11h 56m 50s UTC, Mw = 5.9 Athens earthquake. It 
claimed the lives of 143 people, and caused the collapse 
of several buildings mainly in the northwest suburbs of 
the Greek capital. The approximate location of the 
epicenter of the earthquake was 38.10oN, 23.56oE, 
roughly 20 km northwest from the center of Athens.  
 
The vertical displacement field at surface level caused 
by this tectonic event, was investigated with space born 
Synthetic Aperture Radar Interferometry (InSAR), using 
ERS-2 data. The spatial pattern of the deformation 
induced from the catastrophic earthquake, along with 
measured displacement is shown in Fig. 2. InSAR 
processing revealed significant deformation with a 
maximum Line Of Sight (LOS) subsidence of 
approximately 6 cm [1]. This observation was used in 
earthquake modeling and fault location mapping in the 
middle of the mountain Parnitha. The region of 
maximum deformation coincided with the main shock 
epicenter and this was validated through leveling 
measurements across the Mornos river open aqueduct, 
used for water supply in Athens [2].  
 

 
Figure 2. Unwrapped co-seismic interferogram of the 

7/9/1999 Athens earthquake.  
 
3. DATA USED 
 
For implementing Interferometric Point Target Analysis 
(IPTA) a large dataset of SAR scenes is required. 
Hence, in the frame of ESA-GREECE AO project 
1489OD/11-2003/72, more than 70 ERS-1,2 and 
ENVISAT scenes were obtained for further processing. 
The track number was 465, frame 2835. Tab. 1 presents 
the dataset for ERS-1, 2 and ENVISAT.   
 

Table 1. ERS-1,2 and ENVISAT dataset. 

 
 
4. MASTER SELECTION FOR THE ERS-1,2 
DATASET 
 
IPTA processing involves the selection of a common 
master scene to be used for forming the differential 

No Orbit Date Sensor No Orbit Date Sensor

1 07123 92-11-25 ERS1 1 04026 02-07-12 ENVISAT

2 07624 92-12-30 ERS1 2 06030 03-04-26 ENVISAT

3 10129 93-06-23 ERS1 3 07032 03-07-05 ENVISAT

4 12133 93-11-10 ERS1 4 07533 03-08-09 ENVISAT

5 20493 95-06-16 ERS1 5 08535 03-10-18 ENVISAT

6 20994 95-07-21 ERS1 6 09036 03-11-22 ENVISAT

7 01321 95-07-22 ERS2 7 09537 03-12-27 ENVISAT

8 21495 95-08-25 ERS1 8 11040 04-04-10 ENVISAT

9 01822 95-08-26 ERS2 9 11541 04-05-15 ENVISAT

10 21996 95-09-29 ERS1 10 12042 04-06-19 ENVISAT

11 02323 95-09-30 ERS2 11 12543 04-07-24 ENVISAT

12 22497 95-11-03 ERS1 12 13044 04-08-28 ENVISAT

13 02824 95-11-04 ERS2 13 14046 04-11-06 ENVISAT

14 22998 95-12-08 ERS1 14 15048 05-01-15 ENVISAT

15 03325 95-12-09 ERS2 15 15549 05-02-19 ENVISAT

16 23499 96-01-12 ERS1 16 16551 05-04-30 ENVISAT

17 03826 96-01-13 ERS2 17 17052 05-06-04 ENVISAT

18 24501 96-03-22 ERS1 18 18054 05-08-13 ENVISAT

19 06331 96-07-06 ERS2 19 18555 05-09-17 ENVISAT

20 06832 96-08-10 ERS2 20 20058 05-12-31 ENVISAT

21 07333 96-09-14 ERS2 21 21060 06-03-11 ENVISAT

22 07834 96-10-19 ERS2 22 25569 07-01-20 ENVISAT

23 13846 97-12-13 ERS2 23 26070 07-02-24 ENVISAT

24 17353 98-08-15 ERS2 24 29577 07-10-27 ENVISAT

25 17854 98-09-19 ERS2 25 33585 08-08-02 ENVISAT

26 18355 98-10-24 ERS2 26 34086 08-09-06 ENVISAT

27 18856 98-11-28 ERS2 27 35589 08-12-20 ENVISAT

28 19858 99-02-06 ERS2 28 39096 09-08-22 ENVISAT

29 21361 99-05-22 ERS2 29 40098 09-10-31 ENVISAT

30 21862 99-06-26 ERS2

31 22363 99-07-31 ERS2

32 23866 99-11-13 ERS2

33 24367 99-12-18 ERS2

34 26872 00-06-10 ERS2

35 27373 00-07-15 ERS2

36 27874 00-08-19 ERS2

37 28375 00-09-23 ERS2

38 28876 00-10-28 ERS2

39 29377 00-12-02 ERS2

40 29878 01-01-06 ERS2



interferograms. The most favorable master scene must 
encompass three main characteristics: (a) Uniform 
distribution of perpendicular baselines, (b) Reduced 
atmospheric signal contribution and (c) reduced 
combined temporal and geometrical decorrelation. 
 
The latter criterion in the master selection process 
required the calculation of the expected coherence of the 
interferometric stack. This is done via Eq. 1 [3]: 
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, where Bn is the perpendicular baseline, T is the 
temporal baseline and fDC is the Doppler Centroid. 
 
Using the above formulation, Fig.3 depicts the expected 
coherence for each of the scenes in the ERS-1,2 stack. 

 
Figure 3. Expected coherence of the interferometric 
stack for each scene of the ERS-1,2 dataset. The red 

square corresponds to the selected master image. 
 
Accounting for the criteria mentioned above, the scene 
with orbit No 21862, on 26/06/1999 was selected as a 
suitable master image that meets these requirements. 
The corresponding distribution of the baselines for this 
master scene is shown in Fig. 4, where it is evident that 
the perpendicular baseline sampling is satisfactory for 
the application of the IPTA processing chain. 
 

 
Figure 4. Perpendicular baseline distribution for the 

master scene with orbit No 21862. 
 
5. INTERFEROMETRIC POINT TARGET 
ANALYSIS ON THE ERS-1,2 DATASET 
 
Following the standard procedure, as the one proposed 
by Ferretti et al. in [4] the 39 scenes were accurately 
co-registered to the common master scene on a subpixel 
basis, achieving standard deviations of the order of 0.15 
pixels on average. The generation of the differential 
interferograms was then straightforward, with the use of 
SRTM3 data for the Digital Elevation Model (DEM). 
Precision orbit files associated with each scene were 
extracted either from DELFT or from ESA DORIS, 
depending on data availability.  
 
The next step was the selection of point candidates 
which do not change their scattering behavior over time. 
This was done through the calculation of the 
mean/sigma ratio, where mean is the temporal average 
of the backscattering signal and sigma is the standard 
deviation of the backscattering image from this average. 
The threshold for this ratio was set to 1.5. An additional 
method used for extracting stable point candidates, by 
exploiting the concept that a scatterer needs to dominate 
the clutter scattering in each image [5]. A factor of 1.0 
was used as a threshold, which means that the candidate 
target backscattering has to be above the local spatial 
average. Merging the two criteria, more than 350000 
point candidates were found for the Athens metropolitan 
area. 
 
For the selected point candidates a regression analysis 
accounting for the linear component of the deformation 
velocity and for the DEM error was run. This first 
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Figure 11. Deformation history for a selected point in 

Piraeus port. 
 
Another interesting observation that is related to the 
algorithmic limitations of the method used is the lack of 
permanent scatterers at the north-west of Athens. This 
area is coinciding with the area that was affected by the 
1999 Athens earthquake. This was not a simple non-
linear deformation that extends over time, but a 
deformation step that occurred at one time instance. 
This was not accounted for in the model used for the 
interferometric phases, leading to large standard 
deviation values and hence these points were rejected as 
part of the thresholding procedure.  
 
Finally it should be mentioned the deformation rates 
depicted in Fig.6 are consistent with those obtained 
within the TERRAFIRMA project, also presented in [6]. 
The validity of the results is further strengthened by the 
fact that in that analysis a completely different (and 
hence uncorrelated) dataset was used (adjacent track 
236). The time span of the dataset used was from 1992 
to 1999, prior to the Athens earthquake.    
 
7. EXTENTION TO ENVISAT 
 
As shown in section 3, 29 ENVISAT scenes have been 
acquired, of the same track and frame as the ERS 
dataset. For the time being, the same procedure as in the 
ERS case has been implemented, but exhaustive 
consistency checking of the derived products is 
unaccounted for and hence the results are not presented 
herein. It is however motivating to present the 
preliminary point scatterer density as opposed to the 
ERS scenario. This is shown in Fig. 12 where it is 
shown that the point target spatial coverage of the 
ENVISAT dataset coincides to a great extent with the 
ERS dataset. 

 
(a) 

 
(b) 

Figure 12. Permanent scatterer density for the ERS 
dataset (a) and for the ENVISAT dataset. 

 
8. CONCLUSIONS – FUTURE WORK  

 
In the wider frame of a Greek collaboration scheme 
between the Institute for Space Applications and 
Remote Sensing of the National Observatory of Athens 
and the Dionysos Satellite Observatory of the National 
Technical University of Athens, aiming at the 
continuous monitoring of the Athens metropolitan area, 
some preliminary results were presented using the IPTA 
processing approach and ERS SAR data. Strong 
deformation signal was observed in the broader area of 
Kifissia, attributed to water pumping, along with some 
moderate displacement signals at other city locations. In 
addition the produced diachronic reference Point Target 
distribution map was a crucial step for the deployment 
of future validation schemes. 
 
The planned progress of this work is focused on four 
main axes: (a) the inclusion of a model for the 
interferometric phases to account for the Athens 
earthquake, (b) the expansion of the solution to larger 
time spans, from 1992 to 2010, by including ENVISAT 
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acquisitions, (c) the derivation of the deformation rate 
by using all available ascending and descending datasets 
for the Athens metropolitan area and (d) the setup of a 
validation scheme with the use of an existing GPS 
network in the city of Athens and leveling campaigns. 
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