
Mapping of forest species and tree density using new Earth 
Observation sensors for wildfire applications 

 
Iphigenia Keramitsoglou*a, Charalambos Kontoesb, Konstantinos Koutroumbasb, Olga Sykiotib, 

Nicolaos Sifakisb 
aUniversity of Athens, Department of Applied Physics, Remote Sensing and Image Processing 

Team, Panepistimioupolis, Build. PHYS-V, GR-15784, Athens, Greece. 
bInstitute for Space Applications and Remote Sensing, National Observatory of Athens,  

Metaxa & Vas. Pavlou St, Pendeli, Athens, GR-15236, Greece 
 

 
 

ABSTRACT 
 
The success of any decision support system for managing wildfires lies on its ability to simulate fire evolution. 
Therefore, accurate information on the natural fuel material in any area of interest is necessary. The present study aims 
to provide methodological tools to explore in depth the potential of new Earth Observation data for horizontal mapping 
of vegetated areas. Two approaches are mainly described. The first one deals with the classification of ASTER visible, 
near- and short-wave infrared images in a detailed nomenclature including both different species and tree densities. This 
is important for wildfire studies since the same vegetation classes may represent completely different risk ignition levels 
depending on their morphological characteristics (i.e., trees height and density). The improvement of class separability 
using hyperspectral images acquired by Hyperion is also investigated. The second approach refers to a pattern 
recognition software tool for single tree counting using a very high spatial resolution image acquired by IKONOS-2 
satellite. According to this approach, the regions dense in plants are identified by applying a suitable thresholding on the 
image. The resulted regions are further processed in order to estimate the number and location of single trees based on a 
pre-specified crown size per stratified zone. The outcome of the latter approach may provide direct evidence of tree 
density relating to ground biomass. Finally, the two approaches are used in a complementary manner to explore the 
possibilities offered by new sensor technology to override past limitations in species and fuel classification due to 
inadequate spectral/spatial resolution. The pilot application area is Mount. Pendeli and the east side of Mount. Parnitha, 
in the prefecture of Attiki, Greece. 
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1. INTRODUCTION 
 
Forest fire incidents are known to provoke irreparable damage to regions of utmost significance from the ecological 
point of view. The development of operational systems for managing such incidents is of great significance for both the 
authorities and end-users. The success of such a system strongly depends on the performance of the forest fire 
simulation tool for operational needs that would estimate the way fire evolves. In order to develop an efficient and 
complete mathematical model for fire spread behavior and fire perimeter growth, a curve growth formulation as well as 
a reliable expression for correlating fire spread over the factors influencing it such as terrain slope, vegetation growth 
and density and current meteorological conditions are needed1-3.  
 
The aim of the work is to provide fire modelers with a reliable and valid assessment of vegetation cover types and fuel 
maps taking into consideration canopy structure and biomass spectral properties. For that reason, we exploit the 
potential of Earth Observation (EO) data provided from state-of-the-art sensors, in combination with in-situ 
observations, to develop a standardized method to assess forest ecosystem vegetation parameters. Three different types  
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of EO images are used in the study, namely (i) multispectral High Spatial Resolution ASTER (Advanced Spaceborne 
Thermal Emission and Reflection Radiometer) images; (ii) hyperspectral Hyperion images; and (iii)multispectral Very 
High Spatial Resolution IKONOS-2 images. 
 
ASTER is an advanced multispectral imager that was launched on board NASA’s Terra spacecraft in December, 1999. 
ASTER covers a wide spectral region with 14 bands from the visible to the thermal infrared (TIR) with high spatial, 
spectral and radiometric resolution. It consists of three separate subsystems, each operating in a different spectral region, 
using separate optical systems. These subsystems are the VNIR (Visible and Near InfraRed), the SWIR (ShortWave 
InfraRed) and the TIR. The spatial resolution varies with spectral region: 15 m in the VNIR, 30 m in the SWIR and 90 
m in the TIR. The major innovative features of ASTER are: (i) simultaneous earth surface images from the visible to the 
thermal infrared; (ii) higher geometric and radiometric resolution in each band than current satellite sensors, (iii) near 
infrared stereoscopic image pairs collected during the same orbit, (iv) exquisite optics that allow the instrument axis to 
move as much as ± 24 degrees for SWIR and TIR cross-talk direction from the nadir, and (v) highly reliable cryocoolers 
for the SWIR and TIR sensors4. 
 
The VNIR high resolution radiometer observes the targets using solar radiation reflected from the earth surfaces in three 
visible and near infrared bands useful primarily for land survey, vegetation assessment, environmental protection and 
disaster prevention. On the other hand, SWIR is an advanced high resolution multispectral radiometer which detects 
reflected solar radiation from the earth surfaces in the wavelength region of 1.6 – 2.43 micrometer. SWIR is especially 
advantageous for resources discrimination such as rocks and minerals and for environmental survey such as vegetation 
types and volcanoes.  
 
The hyperspectral Hyperion sensor, onboard EO-1 (launched in November 2000), has a 16-day repeat cycle and 
acquires data in pushbroom mode with two spectrometers, one in the visible and near infrared (VNIR) range and another 
in the short-wave infrared (SWIR) range. Hyperion provides continuous spectral coverage over 220 bands collected 
with a complete spectrum with high radiometric accuracy, with a ground sample distance (GSD) of 30 meters for all 
bands. Each Hyperion scene is collected as a narrow strip, covering a ground area of approximately 7.7 km in the 
across-track direction, and 42 km or 185 km in the along-track direction (depending on the original data acquisition 
request;  http://eo1.usgs.gov/userGuide/hyp_prop.html) 
 
Moreover, the launch and subsequent acquisitions of the IKONOS platform in 1999 have heralded a new era by 
providing very high spatial resolution images. IKONOS-2 satellite is on a sun-synchronous low earth orbit at a nominal 
altitude of 681 km and has a revisiting capability of 3 days. The sensor’s instantaneous field of view is such that it 
collects images of the Earth with a very high spatial resolution of 1 and 4m in the panchromatic and multispectral 
modes, respectively. The four IKONOS-2 multispectral channels are tuned to detect radiation in the visible spectrum 
(450–530nm centered in the blue, 520–610 nm centered in the green and 640–720nm in the red) as well as in the near 
infrared spectrum (770–880 nm). At these resolutions, ecologists are able to directly identify certain species (e.g. 
detection of individual tree crowns) and species assemblages5. Due to the higher costs of these images, IKONOS-2 
images were used only for fine scale forest mapping, where detail is considered more crucial. 
 
The present pilot application takes place in the mountain area of Penteli and the east side of Mount. Parnitha in the 
prefecture of Attika in Greece. The selection of this area is of great interest because it is one of the mountain areas 
mostly hit by fires in Greece. It is located north-northeast of the city of Athens; on its slopes there are a lot of built up 
areas. In the Penteli area, there have been many conflagrations registered with detrimental effects such as loss of human 
lives, forests, properties, and homes. It is remarkable that on June 13, 1992 a fire burned 241 km2. Penteli is covered 
with vegetation, which consists of the most flammable forest species such as Aleppo pine (high forest and reforestation), 
and holm oak. Mount Parnitha on the other hand has an extended area of fir trees. 
 
The ultimate goal of the present study is to provide methodological tools to explore in depth the potential of new EO 
data for horizontal mapping of vegetated areas. For that purpose, we explore the potential of image synergistic 
interpretation through the integration of complementary data (in VNIR & SWIR) in order to obtain more information 
than cannot be derived from single sensor data alone. Two approaches are mainly described: (i) classification of 
multispectral ASTER complementary data (in VNIR and SWIR) and hyperspectral Hyperion images and (ii) pattern 
recognition for single tree counting using an IKONOS-2 image.  
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2. METHODOLOGY 
 
The work undertaken can be divided in two main approaches, namely (i) classification of multispectral ASTER 
complementary data (in VNIR and SWIR) and hyperspectral Hyperion images and (ii) pattern recognition for single tree 
counting using an IKONOS-2 image. These are described next. 
 

2.1 Classification 

2.1.1. Classification of ASTER complementary data 
ASTER products AST2B05V and AST2B05S (i.e. surface reflectance in VNIR and SWIR) acquired at two different 
dates are used. The first acquisition was in autumn (13/10/2003) and the second one in the following spring 
(21/03/2004).  
 
First, all images are resampled to 25m. In order to generate a new image containing the information present in the 
available satellite images, these are geometrically corrected and georeferenced with the highest possible precision. For 
this purpose we use a 2nd degree polynomial transformation with Ground Control Points (GCP). In theory, six GCPs are 
enough in order calculate the parameters of this polynomial, however we identify 14 GCP uniformly distributed in the 
image. The success of transformation is checked by means of the mean square error which in this case is 7 m, that is to 
say roughly one third of a pixel (25m). 
 
The second step of the pre-processing deals with the exclusion of correlated spectral bands from further processing. Five 
bands from each image are kept as non correlated. Following that, a new image is generated with the ten selected bands 
from both dates. This is illustrated in Table 1.  
 

Layer of new image ASTER Band Date of acquisition 

1 1 VNIR 13/10/2003 
2 2 VNIR 13/10/2003 
3 3 VNIR 13/10/2003 
4 1 SWIR 13/10/2003 
5 5 SWIR 13/10/2003 
6 1 VNIR 21/03/2004 
7 2 VNIR 21/03/2004 
8 3 VNIR 21/03/2004 
9 1 SWIR 21/03/2004 

10 5 SWIR 21/03/2004 

Table 1: Layers of information of new image 

 
The objective is to classify the study area using a detailed nomenclature representing both tree species and densities. 
For that reason, the area is divided in three “strata” (zones) by means of CORINE Land Cover 2000 database. These are:  

(i) Forest,  
(ii) Natural Vegetation, and  
(iii) Transitional Forest.  

 
There is also a fourth stratum of artificial surfaces but it is masked out. Representative sampling sections of 
approximately 1 km2 were defined for each stratum. An experienced forester conducted the collection of in-situ data, by 
means of polygons with detailed description within each sampling section. These polygons are essentially the training 
samples. 5-10% of these samples are separated to be used as evaluation points for the assessment of the classification. 
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The remaining training samples are digitized, checked thoroughly and modified accordingly to ensure homogeneity 
within the polygons, before a number of tests is applied. The tests included: 
� ellipses separability in feature space; 
� transformed divergence6; and 
� contingency matrix. 

The basic approach followed is that the classification nomenclature is as detailed as possible. However, in cases where 
classes cannot be separated (according to the above mentioned tests), these are merged and named appropriately. The 
classification was performed using the (parametric) maximum likelihood algorithm taking into consideration the 
contingency matrix, together with the mean and standard deviation of the training samples . This resulted in a two-layer 
image (first and second guess). Following that, a fuzzy convolution was applied using a 3x3 kernel. The fuzzy 
convolution operation creates a single classification layer by calculating the total weighted inverse distance of all the 
classes in a window of pixels. Then, it assigns the center pixel in the class with the largest total inverse distance summed 
over the entire set of fuzzy classification layers. This has the effect of creating a context-based classification to reduce 
the speckle or salt and pepper in the classification7. 

2.1.2. Classification of Hyperion image 
 
A single Hyperion scene acquired on September 20, 2004 covering an area of 7.6 x 86 km2 was processed. 
 
Due to a large number of stripped bands not all bands were usable. Therefore the following procedure was applied in 
order to reduce the initial number to 63 bands, preserving as much as possible the spectral information. 
 

Step 1.  Create separate files for Visible, NIR and SWIR bands. 
Step 2.  Removal of bands presenting dense striping. 
Step 3.  Calculation of Principal Components Analysis (PCA) for each spectral area. 
Step 4.  Location of remaining non systematic stripes detected in the secondary PCA components 
Step 5.  Creation of a new subset with the reduced bands. 
Step 6.  Recalculation of PCA for the remaining bands. 
Step 7.  Return to Step 4 until stripping is random and located to small areas. 
Step 8.  Computation of the correlation matrix for each file. 
Step 9.  Selection of the less correlated bands. 
Step 10.  Creation of a new file with the 63 remaining bands. 

 
After band reduction, the scene was reduced to an area 7.6m wide and 25km long, focused on Mt. Parnitha. The image 
was then resampled to 25m resolution and geometrically corrected to the Hellenic reference system (EGSA87). 
Atmospheric corrections were not applied since humidity measurements in the area one hour before, one hour after and 
during the image acquisition did not show levels of relative humidity high enough (i.e., >70%) that could significantly 
influence the spectral signature (average relative humidity was measured to be 50%).  
 
Classification was then performed using the method of maximum likelihood feature space fuzzy classification without 
non-parametric rule and two best classes per pixel. It was performed separately on two major strata, “Forest” and 
“Transitional Forest-Natural Vegetation”. The Transitional Forest and Natural Vegetation strata were unified due to the 
small area covered by the latter. 

2.2. Single tree counting on IKONOS-2 image 
The proposed method makes assessments of the position and the crown size of the single tree within a forested area 
using as input very high spatial resolution imagery derived by satellite sensor or airborne acquisitions. The imagery used 
can be panchromatic or color, the latter being the result of the fusion of panchromatic with multispectral data, with a 
spatial resolution of 1m (e.g. IKONOS) or higher (0.5m-0.8/pixel, aerial photography, Quickbird, etc). The proposed 
method is implemented through the employment of a specifically developed algorithm based on combinations of low 
level image processing, segmentation and pattern recognition techniques. The algorithm’s current level of development  
allows the treatment of B&W imagery or respectively the 1st Principal Component of a multi-channeled image, which 
also forms a B&W image layer. Pixel data of either 8 or 16 bits per pixel can be used as input to the algorithm.  
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The basic principle dominating the algorithm’s development is the need to be applicable not only within fields where 
trees are normally distributed and well separated from one another (e.g. fields of tree cultures or agricultural olive 
farms), but also within dense forested areas, where crowns of a tree stand are connected or overlap each other and 
significant tree crown information is hidden due to shadows caused from neighboring trees or relief. To overcome these 
difficulties, the algorithm is designed to be supervised by the analyst, the latter entering auxiliary knowledge relating to 
the mean tree crown size per segment area, denoted as cr, and the expected tree crown overlap doverlap. For this the 
proposed method makes use of an additional layer of information introducing polygons, hereinafter denoted as regions, 
representing the tree vegetation classes found in the area of interest, associating for each vegetation class the expected 
values for the parameters cr and doverlap. This layer can be any existing vegetation layer of the area of interest or it can be 
the output of a common tree species classification problem, using high resolution satellite imagery (ASTER) as it is the 
case in this study. The proposed method considers each region of the whole area separately and tries to identify objects 
through their shadows. Specifically, for each region all of its (disconnected) sub-regions are identified. For each sub-
region X the following actions take place. 
 
 

Step 1 Histogram equalization. The minimum, xmin, and the maximum, xmax, values of the pixels contained in X are 

identified and the value of each pixel x is transformed to ,255
minmax
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y

−
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=  resulting to a new 

contrast stretched image of X, denoted by Xc. 
 

Step 2 Thresholding. On the intensity histogram h(x) of Xc, the position xt where 1
0
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x
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 is identified where 

t1 is an a priori defined parameter. Let Xt be the resulting image.  
 

Step 3 Identification of objects (disconnected regions) in X takes place by utilizing Xt. 
 

Step 4 Elimination of objects whose number of pixels is less than a predefined threshold. 
 
 
For each object Y in X the following actions are carried out: 
 
� Computation of the area, A(Y), of Y (=number of pixels of Y). 
� Determination and refinement of the boundary B(Y) of Y. 
� Computation of a circularity index. This index shows how close to circularity is Y1. It is defined as  
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∈=  is the mean distance of the pixels on the boundary of Y 

from its center and )(YB  is the number of points on B(Y). As the formula in (1) shows, the smaller the values of 

C(Y) the higher the degree of circularity.  
� If A(Y) is less than a predefined threshold A0

2
 or is less than a predefined threshold A1 and exhibits high circularity3 

then: 
                                                           
1 This is important for example in the case where the object that exhibits high circularity and its area is comparable to 
the mean tree crown size for the corresponding region. Then it is likely that the object corresponds to an isolated tree. 
2 A0 is of comparable size with the mean tree crown size of the corresponding region. 
3 A1 equals a few times A0 (typically 3-5 times). Also, the high circularity is expressed by the condition C(Y)<1. 
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¾ Estimate a single tree centered at the mean of Y (as it is computed taking into account only its boundary 
pixels). 

 
� Else if A(Y) is greater than A1 or A(Y) is less than A1 but it exhibits low circularity4 (this is a strong indication that 

we have an agglomeration of trees) then the following actions are carried out 
 
¾ Histogram equalization  on Y (as in the general case). Let Yc be the result of this action. 

 
¾ Thresholding on Yc (where the threshold is set equal to 50). Let Yt be the thresholding result. 

 
¾ Identification of objects (disconnected regions) in Y takes place by utilizing Yt. 

 
¾ Elimination of objects whose number of pixels is less than a predefined threshold (typically, this threshold 

equals to a few pixels). 
 

¾ Estimation of the number of trees, k, that belong to Y, as 
overlapdcr

YA

*

)(
, where doverlap as mentioned is the index 

measuring the expected degree of overlap among the trees. The higher the value of doverlap, the less the degree 
of overlap among the trees is. 

 
¾ If k equals 1 then  

 
� Estimate a single tree centered at the mean of Y. 

 
¾ Else if k is greater than 1, then 

 
� Perform the BSAS clustering algorithm8  for estimating initial positions for the trees in the area. 
� Perform the k-means algorithm for refining the previous result and to distribute the estimated positions of 

the trees more evenly in the Y area. 
 
The algorithm is tested on a very high spatial resolution panchromatic IKONOS image representing the main forested 
zones of the Penteli mountain. The spatial resolution of the image layer used is of 1m. The tree species classification 
map derived from the use of ASTER image data acquired over the same area, is used as additional layer to supervise the 
algorithm’s output as described in the beginning of this section.  
 

3. RESULTS 
 

3.1. Image Classification 
The classified image for each stratum was evaluated by means of: 

1. overall performance; 
2. confusion matrix9; 
3. kappa statistics; and 
4. photo-interpretation. 

 
The following table summarizes the results of all classification experiments. It should be stressed that the area covered 
by ASTER image is 625 km2 whereas by Hyperion is 190 km2.  

                                                           
4 Low circularity is expressed by the condition C(Y)>1. 
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Sensor Stratum Number of 

classes 
Overall 

performance 
Overall Kappa 

statistics 

Forest (F) 21 84% 0.71 
Natural Vegetation (NV) 9 84% 0.76 

 
ASTER 

Transitional Forest (FT) 19 79% 0.76 
Forest (F) 10 90% 0.89   

Hyperion Transitional Forest – Natural 
Vegetation (FT-NV) 

10 
 

94% 0.93 

Table 2: Overall classification results for ASTER and Hyperion sensors 

 
Classification accuracy of Hyperion image is assessed using the method of “equalised random reference pixels”, which 
allows lessening the bias in the results, due to lack of adequate number of ground-truth polygons in the limited area 
covered by Hyperion scene. For ASTER complementary data, the assessment was performed using a subset of the 
ground-truth data acquired during the field survey. The overall accuracy results for both classification experiments are 
presented in Table 2. The accuracy of ASTER products as well as the number of identified classes  is dependent on the 
strata. The overall accuracy of the classified maps varies from 79-84% and of kappa coefficient from 0.71-0.76. The 
output of Hyperion classification seems to be less dependent on the strata and more accurate than ASTER (overall 
accuracy from 90 to 94%; kappa coefficient from 0.89 to 0.93). The number of identified classes can not be directly 
compared between Hyperion and ASTER map, as the areas covered are different. 
 

In terms of species and densities separability the results are presented in Tables 3 and 4. 
 

Strata 
HYPERION 

Forest Transitional Forest- Natural Vegetation 

Species Identified Densities Identified Densities 
Aleppo pine X 3 X 3 
Fir X 2 X 1 (unified) 
Coppice X 3 X 2 
Evergreen broad 
leaved 

X 1 X 2 

Grasslands - - X 1 
Bare soil X 1 X 1 

Table 3: Vegetation species identified and classified in each stratum (X) using the Hyperion image. The number 
of classes representing different densities discriminated for each vegetation species is given.  
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Strata 
ASTER 

Forest Natural Vegetation Transitional forest 

Species Identified Densities Identified Densities Identified Densities 
Black pine  X 1 - - - - 
Fir X 2 - - X 1 
Broad 
leaved 
deciduous 

X 1 - - - - 

Deciduous 
oak 

X 1 - - - - 

Aleppo pine X 1 (unified) - - X 1 (unified) 
Shrub X 1 - - - - 
Coppice X 4 X 3 X 3 
Evergreen 
broad 
leaved 

X 3 X 1 (unified) X 3 

Maquis X 1 X 2 X 4 
Grasslands X 4 X 1 X 1 
Natural 
regeneration 
of forest 

- - - - X 3 

Table 4: Vegetation species identified and classified in each stratum (X) using the ASTER images. The number of 
classes representing different densities discriminated for each vegetation species is given. 
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Figure 1: Average DN values for samples of evergreen broad leaved and Aleppo pines in a two dimensional 
feature space of Hyperion data. The average DN values are calculated from the Hyperion bands that cover the 
corresponding ASTER band.  
 
The classification showed that the area acquired by Hyperion is essentially covered by aleppo pine and evergreen broad 
leaved forest. In elevations that exceed 500 meters fir forest predominates as expected. Table 3 shows that in the stratum 
Forest, three different densities of aleppo pine are discriminated, two for firs, three for coppice and one for evergreen 
broad leaved trees. In strata Transitional Forest and Natural Vegetation, three densities of aleppo pine are discriminated. 
For the fir category differentiation in density was not possible. Moreover, two densities of coppice are distinguished, 
two in evergreen broad leaved trees and one in grasslands. The equivalent results from the classification of ASTER 
images are presented in Table 4. In this case the identified species are more than the ones of the Hyperion, however this 
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 can be attributed to the larger area covered by ASTER- it is more than triple the size. It is interesting to compare the 
two Tables and note that aleppo pine which is a predominant species of the area can be better discriminated into 
different density classes using Hyperion rather than ASTER images. For the latter, although there are enough training 
polygons provided, it is impossible to detect the different densities, therefore there appears to be one class (unified) 
which includes all density levels. The opposite is true for evergreen broad leaved forest, i.e. three density levels were 
discriminated in F and FT strata using ASTER images. Coppice densities are distinguished effectively both with 
ASTER and Hyperion data. 
 
In terms of species classification a satisfactory separability is observed between the different classes. Coniferous 
(aleppo pines and firs) and evergreen broad leaved trees present distinct spectral signatures and are differentiated 
without difficulty (Table 3 and 4). It is the same in the case of the other classes (grasslands, coppice and bare soil). On 
the other hand, aleppo pines and firs, both belonging in the coniferous category, were difficult to distinguish with 
Hyperion data, and this was, to a large degree, imposed by the training polygons.  
 
Figure 1 shows the average DN values for samples of two main vegetation classes in the area (evergreen broad leaved 
and aleppo pines) in a two dimensional feature space of Hyperion data. The average DN values are calculated from the 
Hyperion bands that cover the corresponding ASTER band. ASTER band 1 corresponds to Hyperion bands 18-25. Band 
2 corresponds to 30-34 Hyperion bands. ASTER band 3 corresponds to 45-52 Hyperion bands. The graphs show that the 
two species present adequate separability.  
 

3.2. Tree counting 
Figure 2 shows a detail of the derived map of points representing the location of trees overlaid on the original IKONOS 
image.  
 
The tree counting algorithm results are compared against the outcome of several independent human photo-
interpretations. The photo-interpreters digitized tree positions in specifically defined test areas, which represent all types 
of vegetation and tree densities, found in the area of interest. Algorithm underestimations and overestimations in tree 
counting are identified and measured per test area in respect to the photo-interpretation results. This error analysis 
shows that in the totality of the test areas, the total number of trees counted by the algorithm is deviating from the one 
given by photo-interpretation by only 5%. Indeed in a total of 3332 trees counted by photo-interpretation the algorithm 
identified a number of 153 trees less. By considering tree underestimations and overestimations separately without 
adding them at test area level, it is concluded that the error level associated to the current version of the algorithm and 
image data used is of the order of 25%. Even this result is not far of being acceptable and the method being considered 
operational, given that the algorithm enables the identification of locations of trees and crowns for a total of 25770 trees 
in less than 4 hours of machine processing. This should require several days of human interpretation to derive.  
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Figure 2: The derived tree locations overlaid on the original IKONOS image (coordinates are in meters) 

 
 
 

4. CONCLUDING REMARKS 
 
The aim of the present study is to explore the feasibility of classification and pattern recognition software tools on new 
Earth Observation data for horizontal mapping of vegetated areas. Two approaches are mainly described. The first one 
deals with the classification of ASTER visible, near- and short-wave infrared images and Hyperion hyperspectral 
images in a detailed nomenclature including both different species and tree densities. This is important for wildfire 
studies since the same vegetation classes may represent completely different risk ignition levels depending on their 
morphological characteristics (i.e., trees height and density). Although direct comparison is difficult to perform as the 
scene covered by Hyperion is only a subscene of ASTER, some general conclusions can be drawn based on the work 
carried out. 
 
Both ASTER and Hyperion images have comparable spatial resolution, which indicates that the working scale for 
vegetation mapping is fundamentally the same. However, the ASTER swath is larger than the Hyperion’s making the 
area covered by a single scene of the latter sensor much limited (7.6 km). In terms of spectral characteristics, Hyperion  
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is considered superior, as the 242 bands (out of which 63 are used here) with approximately 10nm width offer multiple 
layers of information. However, two points need to be stressed: one is that these bands often contain correlated signals 
(see Figure 1), and the other is that Hyperion does not provide bands in the thermal infrared. Nevertheless, the latter is 
not an issue here, as thermal information is not used in any of the classification experiments. The superiority of spectral 
information is reflected on the results of the classification of Hyperion image (see Table 2) which exceeds 90%. The 
ability to discriminate individual species and densities depends on the stratum and the species itself, as the detailed 
confusion matrices indicate. Finally, the cost of ASTER images is 0.02 € per km2 whereas it varies from 9 to 36 € per 
km2 for Hyperion images.  
 
Based on the above, a generic conclusion is that ASTER images are cheaper to achieve, easier to process and cover a 
larger area in a single scene providing an adequate working and mapping scale and added-value classification maps of 
acceptable accuracy. However, at local level, if additional information or superior thematic accuracy is needed, one can 
use Hyperion images in a complementary manner to increase the classification accuracy and class discrimination 
provided by ASTER. 
 
As far as the tree counting algorithm is concerned which provides detailed information at local level, at the moment it is 
tested on very high spatial resolution imagery (digital orthophotos of 0.5m spatial resolution) and on colored satellite 
and aerial digital imagery of similar spatial resolution (0.5-1m). The first results are very encouraging. However, these 
will be further evaluated and presented in the frame of a comparative study examining the role of parameters relating to 
spatial resolution, number of input layers (panchromatic, coloured, PCA), tree species, data radiometric resolution. This 
analysis is expected to be the content of another publication in near future.   
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