Operational fires disaster management via Earth Observation in BEYOND

Charalampos Kontoes^{*1}, Themistoklis Herekakis¹, Ioannis Papoutsis¹, Ioannis Mitsopoulos¹, Stavros Solomos and Vassilis Amiridis

¹ Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Vas. Pavlou & I. Metaxa, 15236, Penteli, Greece

*Corresponding author. E-mail: <u>kontoes@noa.gr</u>

Abstract

The National Observatory of Athens has been established in Greece as a research institute offering, among other things, operational Earth Observation services for disaster management of forest wildfires. In this paper, we present the main activities of the BEYOND Center of Excellence run by NOA, related to fire detection, fire monitoring and rapid mapping, along with damage assessment services using satellite remote sensing techniques supported by state-of-the-art information technologies. The focus lies in integrating fully automatic processing chains into dedicated systems that offer stakeholders online access to robust, accurate and fully operational Web-based tools to assist the Emergency Response and Emergency Support actions.

Keywords: wildfires; burn scar mapping; active fire detection, operational fire monitoring, fire mapping and damage assessment, fire recovery

1. INTRODUCTION

Fires have been one of the main driving forces in the evolution of plants and ecosystems, determining the current structure and composition of the landscapes [1]. However, significant alterations in the fire regime have occurred in the recent decades, primarily as a result of socioeconomic changes, increasing dramatically the catastrophic impact of wildfires as it is reflected in the increase during the 20th century of both the number of fires and the annual area burnt.

The scientific fire community is trying to address the wildfire phenomena using remote sensing (RS) techniques and geographic information systems (GIS) to effectively support the decisionmaking process. Although, GIS and RS are both powerful tools for acquisition, storage, retrieval, manipulation and visualization of geospatial data, its limitations in performing complex near real time data analysis at fine resolution scales, requires powerful downscaling methods, integration of multisource spatial data and robust web applications. Fire monitoring and management in Europe and in the wider Mediterranean region in particular, is of paramount importance. Almost every summer, massive forest wildfires break out across the Mediterranean, leaving behind severe destruction in forested and agricultural lands, infrastructure and private property, and losses of human lives. European initiatives in the area of Earth Observation (EO) like the GMES program have therefore undertaken an active role in the area of fire monitoring and management for Europe, and supported the development of relevant European operational infrastructures in the domain. Several pre-operational projects like **RISKEOS** and SAFER (Services and Applications For Emergency Response) have laid the ground for the main operational mapping component service GIO EMS, which started operations on April 1, 2012. It has a worldwide coverage and provides stakeholders with maps based on satellite imagery, rush (burnt area maps) and non-rush mode (post-wildfire assessment).

In the framework of the BEYOND Center of Excellence at the National Observatory of Athens (NOA), a large number of Earth Observation (EO) images of different spectral and spatial resolutions are systematically being processed to derive thematic products that cover a wide spectrum of fire management applications, at pre-fire, during and post-fire crises, from fire detection, fire monitoring and rapid mapping, to damage assessment and support of recovery actions in the affected areas. The processed satellite imagery is combined with auxiliary geo-spatial information coupled with powerful spatial statistical methods. These processing chains are scalable via the exploitation of state-of-the-art tools, including array database and semantic web technologies.

Here we describe the theoretical background, the architecture and performance characteristics of two fully automated webGIS- based systems that are designed to assist land managers in wildland fire suppression planning and in post fire damage assessment. The systems have been derived by incorporating multispatial, multitemporal and multispectral remote sensed data from NASA and European facilities. An active real time fire monitoring service, which provides continuous information on active fires detected from the MeteoSat Second Generation (MSG) SEVIRI satellites, monitors the active fire spots every 5-minutes all over Greece including smoke dispersion assessments based on a Lagragian model, as well as archived information products on past fire events. The second system includes a webGIS application that is capable to depict the results of the diachronic burnt area mapping over Greece for the last 30 years (1984 to 2013) by implementing a fully automated processing chain for burnt area mapping, which is based on the exploitation and analysis of the full USGS archive of Landsat TM images, since the first satellite image was ever recorded over Greece (1984).

Further evaluation and validation of the two systems performance is carried out by performing robust downscaling methods using auxiliary multiscale GIS information (underlying forest fuel cover, slope and height, local meteorological conditions), comparing the system results against insitu fire data obtained from the Greek Fire Brigade Service and by actual and simulated fire behavior observations. Additionally, the geo-spatial information is enriched by more detailed maps of the fuel spatial extend and coverage. The improvement of the two systems is expected to contribute substantially to judicial wildland fire management and can be fully exploited operationally by local fire management authorities without further processing.

2. REAL-TIME FIRE MONITORING

Most of the fire detection algorithms using data from the SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensor on top of the Meteosat (MSG) series of geostationary meteorological satellites are based on variations of EUMETSAT's (the international organization managing the Meteosat platforms) proposed classification methodology for identifying hotspots [2]. BEYOND, among others [3] has adopted a similar approach [4] for detecting hotspots. However, different studies have been conducted [5] and validated [6] that suggest another direction. The main concern with respect to EUMETSAT's recommendation has to do with the variance of the solar contribution to Earth's apparent temperature, leading to unreliable comparison with predefined thresholds. Therefore, it is suggested that a contextual analysis should be carried out through a spatial matrix of N×N pixels. The BEYOND experts , on the other hand, have adopted a dynamic threshold estimation approach, as opposed to fixed thresholding, to cope with the solar variance, leading to increased thematic accuracy [7]. It should be noted that [5] was applied in the framework of SAFER project with noticeable omission errors for Greece, mainly attributed to insufficient customization for the geographic area's special characteristics in terms of vegetation species and underlying land cover.

At a global level, operational fire monitoring systems are based on MODIS (Moderate-resolution Imaging Spectroradiometer) sensor data on top of the Terra and Aqua satellite platforms. The spatial resolution is four times better than that of MSG/SEVIRI (1×1 kilometers, as opposed to 4×4 kilometers, respectively), but with much less temporal resolution (four passes over Greece per day,

as opposed to the five-minute acquisition resolution, respectively). The most prominent systems are the <u>European Forest Fire Information System</u>, maintained by the Joint Research Center, and the <u>Fire Information for Resource Management System (FIRMS)</u>, delivering global MODIS hotspots and fire locations in easy-to-use formats, maintained by NASA.

Since 2007, NOA has operated an MSG-1,2,3/SEVIRI acquisition station and has been systematically archiving raw satellite images on a five- minute basis. Using these data, BEYOND has improved and has been sustaining a real-time, 24/7 fire hotspot detection service for effectively monitoring forest fires all over Greece in near-real time. Other main advancements include the establishment of a fully automatic processing chain for fire monitoring, and the enhancement of the thematic accuracy of the generated hotspot products using semantic technologies.

Figure 1. Fire monitoring service architecture.

2.1 System architecture

The fire monitoring service architecture is depicted in Figure 1. The entire process is fully automatic, from raw image collection to final presentation to the user interface and storage of the hotspot products.

The ground-based receiving antenna collects all spectral bands from the MSG platforms. Then, the raw datasets are decoded and temporarily stored at the ground station before the application of a dedicated service, known as MSG SEVIRI RT Fire Monitoring, which manages the data stream in real-time, extracting and storing the raw file metadata in an SQLite database, filtering the raw data files and dispatching them to a dedicated disk array for permanent storage.

The same process is responsible for remotely triggering the processing chain [4] to derive hotspots. The back-end of the system implements the hotspot detection processing chain, evaluates semantic queries for improving the accuracy of the hotspot products and generates thematic maps. In this context, a geospatial ontology which links the generated hotspot products with stationary GIS data (Corine LULC or a finer LULC map, Coastline, Greek Administrative Geography) and with linked geospatial data available on the Web (LinkedGeoData, GeoNames) is used to derive high-informative thematic products. Finally, dissemination to the end-user community (civil protection agencies, state and regional authorities, environmental agencies, public authorities, and private sector users) is realized through a Web application [8]. Figure 2 shows a screenshot of the dedicated front-end Web interface.

Figure 2. Web-tool for visualizing real-time active fires and archived hotspots over Greece.

2.2 Processing chain

The core processing chain used by BEYOND, comprises of a series of sub-modules, initially responsible for ingesting the raw data from the native format to an appropriate one for the subsequent processing stages, and cropping of the image to the area of interest. Then, the cropped data are resampled to a rectangular grid and georeferenced using second-order transformation polynomials. The output product is fed to the classification module where for each detected hotspot we associate a confidence level. The final stage concerns the output generation to shapefile and raster formats and storage of the hotspots in the system database.

The innovative aspect of the processing chain in the post-processing refinement phase, based on semantic technologies, that has been implemented in the framework of the TELEIOS ICT project and achieved the third prize in the International Semantic Web Conference (ISWC) conference [9]. According to this concept, a hotspot product is refined by analyzing its spatio-temporal persistence and pattern, and by taking into account the underlying LU/LC conditions and administrative boundaries. Additionally, in order to cope with the \sim 3.5 km low spatial resolution of the MSG/SEVIRI sensor – a trade-off with its very high temporal resolution – we have integrated fuel data with meteorological data (wind direction), and altitudinal zone information to map the active fire occurrence probability at each timestamp on a sub-pixel level.

To this end, the original hotspot pixel has been split to a 7-by-7 rectangular pixel grid aimed at achieving a ~500-meter wide cell. At this point, an iterative analysis is invoked for attributing to each of the 49 bins of the grid a probability of active fire occurrence that depends on the underlying fuel type, the confidence level of the initial hotspot observation, the contribution of the neighboring bins in fire transmission inside an area of 3-by-3 bins wide, which is a variable of the wind direction and the fuel characteristics of the area, and the expected relations, as deduced from the diachronic analysis of fires [10] between the fire occurrences on the one hand, and the altitudinal zones, the slope and the aspect characteristics of the affected areas on the other.

3. DAMAGE ASSESSEMENT AND BURN SCAR MAPPING

Remote sensing tools for the accurate, robust and timely assessment of the damages inflicted by forest wildfires provide crucial information to public environmental agencies and related stakeholders before, during and after the crisis. In literature, several types of EO datasets have been used, ranging from moderate resolution systems like AVHRR and MODIS [11], to higher-resolution imagery from Landsat TM sensor [12], and very-high-resolution data including Formosat, Worldview, Ikonos, Quickbird, and Worldview [13]. Additionally, several techniques have been applied, indicatively using support vector machines [14], texture-based feature extraction methods [15] fixed thresholding and classification tree approaches [16], along with multi-temporal analysis [17].

1st International GEOMAPPLICA Conference 2014 ISBN: xxx-xxx

3.1 Emergency support

The Emergency Support service of BEYOND is activated on a user-demand basis, and the related Burn Scar Mapping (BSM) products are delivered to the end-users within a few days after the suppression of the fire event. Depending on the input satellite data, the service provides BSMs at high spatial resolution (20-30 meter pixel size, and minimum detected fire size of 1 hectare), and very high spatial resolution (2-8 meter pixel size, spatial accuracy of 4-10 meters, detected fire size of 0.5 hectares), as well as damage assessments at a prefecture level with respect to the existing Corine LC database. Figure 3 depicts indicative cases of BSMs and damage assessments. The same methodology can be applied for Emergency Response applications, allowing the deployment of rapid mapping services.

Figure 3. (left) BSM mapping and damage assessment for selected fire events in the period 2007-2011 over Greece, and (right) Map product following the Emergency Support activation in Corsica.

The entire BSM service chain was extensively evaluated in the framework of the former GMES project SAFER, by subjecting it through a thorough standardization procedure using several criteria (thematic accuracy, user support, sustainability of the means used, transferability, timeliness). Following a test scenario for the island of Corsica, the NOA BSM service was qualified – top of its class - as an end-to-end service for fire related Emergency Support activities for integration to operational scenarios all over Europe.

3.2 Diachronic damage analysis

The established in BEYOND fully automatic processing chain has been successfully applied to the entire archive of Landsat imagery acquired over Greece, spanning from 1984-2012, which has been collected and managed at NOA. The number of full Landsat TM and ETM+ frames in the framework of the study was 415. These BSM products were generated for the first time to such a temporal and spatial extent, and are ideal to use in further environmental time series analyses, production of statistical indexes (frequency of fire occurrence, geographical distribution and number of fires over the Greek territory) and applications, including change detection and climate change models, urban planning, and correlation with manmade activities. Diachronic mapping is provided through an innovative Web-GIS application [18], allowing the user community to preview the annual BSM records at a fully detailed scale, as well as to interact with relative Heat-map and LC products.

4. CONCLUSIONS

We briefly presented the operational services for near real-time fire monitoring, smoke dispersion, and burnt area delineation, for rapid mapping and/or diachronic mapping, which are being supported by NOA in the framework of the BEYOND Center of Excellence. These services meet the criteria for cost efficiency, thematic accuracy, timeliness, and large geographic coverage extent. In general, the EO-based approaches are by far exceeding the mapping standards established by foresters at any administrative level (region/country/continent) for supporting actions relating to wildfire recovery management and fire emergency support and response. The offered services are characterized by high flexibility and transferability to any geographic area. On this basis, the use of satellite data in dedicated processing chains form suitable and robust solutions for operational fire detection and damage assessments at European and national levels. They are expected to be further enhanced using satellite data from the Sentinel 2 and Sentinel 3 Copernicus missions of ESA, which will be acquired in real time at the premises of the Mirror Site established in the NOA. Moreover, these services may be used for fire risk planning, by combining diachronic burnt area patterns with LC and geomorphology maps, thus identifying the most vulnerable areas that need continuous supervision and immediate intervention for the protection of environmental and social sustainability.

Acknowledgement

The publication was supported by the European Union Seventh Framework Programme (FP7-REGPOT-2012-2013-1), in the framework of the project BEYOND, under Grant Agreement No. 316210 (BEYOND - Building Capacity for a Centre of Excellence for EO-based monitoring of Natural Disasters).

References

- 1. W. J. Bond and J. E. Keely, "Fire as a global 'herbivore': the ecology and evolution of flammable ecosystems, Trends in Ecology & Evolution, vol. 20, pp. 387-394, 2005.
- 2. EUMETSAT, "Active fire monitoring with msg algorithm theoretical basis document," Darmstadt, 2007.
- 3. L.C. Carvalheiro, S.O. Bernardo, M.D.M. Orgaz, and Y. Yamazaki, "Short communication: Forest fires mapping and monitoring of current and past forest fire activity from meteosat second generation data," Environ. Model. Softw., vol. 25, pp. 1909-1914, 2010.
- 4. N. Sifakis, C. Iossifidis, C. Kontoes, and I. Keramitsoglou, "Wildfire Detection and Tracking over Greece Using MSG-SEVIRI Satellite Data," Remote Sensing, vol. 3, pp. 534-538, 2011.
- 5. A. Calle, J. Casanova, and A. Romo, "Fire detection and monitoring using MSG Spinning Enhanced Visible and Infrared Imager (SEVIRI) data," Journal of Geophysical Reserch, 2006.
- 6. A. Calle, F. Gonzalez-Alonso, and S. Merino de Miguel, "Validation of active forest fires detected by msg-seviri by means of modis hot spots and awifs images," Internation Journal of Remote Sensing, vol. 29, pp. 3407-3415, 2008.
- 7. C. Kontoes et al., "Wildfire monitoring via the integration of remote sensing with innovative information technologies,", Vienna, 2012.
- 8. BEYOND real-time fire monitoring. Available at: http://ocean.space.noa.gr/fires (Accessed 23 June, 2014).
- 9. K. Kyzirakos et al., "Real Time Fire Monitoring Using Semantic Web and Linked Data Technologies," in 11th International Semantic Web Conference (ISWC 2012), Boston, USA, 2012.
- 10. C. Kontoes, I. Keramitsoglou, I. Papoutsis, N. Sifakis, and P. Xofis, "National scale operational mapping of burnt areas as a tool for the effective development of wildfire management stategy," Sensors, 13(8): 11146–11166., 2014.
- 11. Rong-Rong Li, Y.J. Kaufman, Wei Min Hao, J.M. Salmon, and Bo-Cai Gao, "A technique for detecting burn scars using MODIS data," Geoscience and Remote Sensing, IEEE Transactions on, vol. 42, no. 6, pp. 1300-1308, 2004.
- 12. A.T. Hudak and B.H. Brockett, "Mapping fire scars in a southern African savannah using Landsat imagery," International Journal of Remote Sensing, vol. 25, no. 16, pp. 3231-3243, 2004.
- 13. C.C. Liu, Y.C. Kuo, and C.-W Chen, "Emergency responses to natural disasters using Formosat-2 high-spatiotemporal-resolution imagery: forest fires," Natural Hazards, vol. 66, no. 2, pp. 1037-1057, 2013.
- 14. X. Cao, J. Chen, B. Matsushita, H. Imura, and L. Wang, "An automatic method for burn scar mapping using support vector machines," International Journal of Remote Sensing, vol. 30, no. 3, pp. 577-594, 2009.
- A.M.S. Smith, M.J. Wooster, A.K. Powel, and D. Usher, "Texture based feature extraction: Application to burn scar detection in Earth observation satellite sensor imagery," International Journal of Remote Sensing, vol. 23, no. 8, pp. 1733-1739, 2002.
- 16. C. Kontoes, H. Poilvé, G. Florsch, I. Keramitsoglou, and S. Paralikidis, "A comparative analysis of a fixed

thresholding vs. a classification tree approach for operational burn scar detection and mapping," International Journal of Applied Earth Observation and Geoinformation, vol. 11, no. 5, pp. 299–316, 2009.

- 17. D. P. Roy, "Multi-temporal active-fire based burn scar detection algorithm," International Journal of Remote Sensing, vol. 20, no. 5, pp. 1031-1038, 1999.
- 18. BEYOND real-time fire monitoring. Available at: http://ocean.space.noa.gr/bsm (Accessed 23 June, 2014).