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ABSTRACT
Advances in remote sensing technologies have allowed us to
send an ever-increasing number of satellites in orbit around
Earth. As a result, Earth Observation data archives have
been constantly increasing in size in the last few years (now
reaching petabyte sizes), and have become a valuable source
of information for many scientific and application domains
(environment, oceanography, geology, archaeology, security,
etc.). TELEIOS is a recent European project that addresses
the need for scalable access to petabytes of Earth Observa-
tion data and the discovery of knowledge that can be used in
applications. To achieve this, TELEIOS builds on scientific
database technologies (array databases, SciQL, data vaults)
and Semantic Web technologies (stRDF and stSPARQL) im-
plemented on top of a state-of-the-art column-store database
system (MonetDB). In this paper we outline the vision of
TELEIOS (now in its second year), present its software ar-
chitecture and give a detailed example of a fire monitoring
application that we have completed.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
????

Keywords
?????

1. INTRODUCTION
Advances in remote sensing technologies have enabled

public and commercial organizations to send an ever-
increasing number of satellites in orbit around Earth. As
a result, Earth Observation (EO) data has been constantly
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increasing in volume in the last few years, and it is currently
reaching petabytes in many satellite archives. For example,
the multi-mission data archive of the TELEIOS partner Ger-
man Aerospace Center (DLR) is expected to reach 2 PB next
year, while ESA estimates that it will be archiving 20 TB of
data before the year 2020. As the volume of data in satel-
lite archives has been increasing, so have the scientific and
commercial applications of EO data. Nevertheless, it is esti-
mated that up to 95% of the data present in existing archives
has never been accessed, so the potential for increasing ex-
ploitation is very big.

TELEIOS1 is a recent European project that addresses
the need for scalable access to PBs of Earth Observation
data and the effective discovery of knowledge hidden in
them. TELEIOS started on September 2010 and it will
last for 3 years. In the first one and a half years of the
project, we have made significant progress in the develop-
ment of state-of-the-art techniques in Scientific Databases,
Semantic Web and Image Mining and have applied them to
the management of EO data.

The techniques developed in TELEIOS are currently be-
ing implemented on top of the pioneer column-store database
system MonetDB2 which has many of the capabilities we
need for scalable querying of PBs of satellite image data with
SciQL, and billions of stRDF triples with stSPARQL. We
have already demonstrated the scalability of our stSPARQL
implementation to billions of stRDF triples with our sys-
tem Strabon3, originally developed on top of PostgreSQL
[5]. Strabon has been ported to MonetDB with the aim of
taking advantage of column-store functionalities for repre-
sentating and querying geospatial data. Similarly, work is
currently underway on implementing SciQL on top of Mon-
etDB by extending its well-known SQL components [17].

The contributions of this paper are the following:

• We outline the vision of TELEIOS and explain in de-
tail why it goes beyond operational systems currently
deployed in various EO data centers.

• Because data models and languages play an important
role in TELEIOS, we discuss in some detail the ones we
utilize: the scientific database query language SciQL,
and the data model stRDF with its query language
stSPARQL targeted at geospatial data expressed in
RDF.

1http://www.earthobservatory.eu/
2http://www.monetdb.org/
3http://www.strabon.di.uoa.gr/
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(a) Concept view of a state-of-
the-art EO data center
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(b) Concept view of the TELEIOS Earth Observatory

Figure 1: Pre-TELEIOS EO data centers and the TELEIOS Earth Observatory

• We give a detailed example of a fire monitoring ap-
plication that we have just completed using TELEIOS
technologies for one of the TELEIOS partners, the Na-
tional Observatory of Athens (NOA).

The rest of the paper is organized as follows. ... Section
2 presents the fire monitoring service operational at NOA
before TELEIOS, and Section 3 explains in detail how this
service was improved using our technologies. Last, Section
4 discusses related work and Section 5 concludes the paper.

2. THE FIRE MONITORING APPLICATION
OF NOA

Fire monitoring and management in Europe, and in the
wider Mediterranean region in particular, is of paramount
importance. Almost every summer massive forest wildfires
break out in several areas across the Mediterranean, leav-
ing behind severe destruction in forested and agricultural
land, infrastructure and private property, and losses of hu-
man lives.

European initiatives in the area of EO like GMES (Global
Monitoring for Environment and Security)4 have therefore
undertaken an active role in the area of fire monitoring and
management in Europe, and supported the development
of relevant European operational infrastructures through
projects such as linkER (Supporting the implementation of
an operational GMES service in the field of emergency man-
agement) and SAFER (Services and Applications For Emer-
gency Response)5.

In the framework of SAFER, NOA has been archiving and
processing on a routine basis, large volumes of satellite im-
ages of different spectral and spatial resolutions (low, mid-
dle, and high spatial resolution) in combination with aux-
iliary geo-information layers (land use/land cover data, ad-
ministrative boundaries, and roads and infrastructure net-
works data) to generate, validate and deliver fire-related
products and services to the entire Southern Europe (Spain,
France, Italy, Portugal, and Greece).

4http://gmes.info/
5http://www.emergencyresponse.eu/
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Figure 2: The NOA fire monitoring service

In this context NOA has been developing a real-time fire
hotspot detection service for effectively monitoring a fire-
front. The technique is based on the use of acquisitions
originating from the SEVIRI (Spinning Enhanced Visible
and Infrared Imager) sensor, on top of MSG-1 (Meteosat
Second Generation satellite, renamed to Meteosat-8) and
MSG-2 (renamed to Meteosat-9) satellite platforms. Since
2007, NOA operates an MSG/SEVIRI acquisition station,
and has been systematically archiving raw satellite images
on a 5 and 15 minutes basis, the respective temporal reso-
lutions of MSG-1 and MSG-2. The archives of raw imagery
are now in the order of 2 Terabytes, corresponding to the
summer fire periods of the last five years.

The fire monitoring service active in NOA before
TELEIOS is presented graphically in Figure 2 and can be
summarized as follows:

(1) The ground-based receiving antenna collects all spec-
tral bands from MSG-1 and MSG-2 every 5 and 15 minutes
respectively.

(2) The raw datasets are decoded and temporarily stored
in the METEOSAT Ground Station as wavelet compressed
images.

(3)The application SEVIRI Monitor, written in Python,
manages the data stream in real-time by offering the follow-
ing functionality:



Figure 3: A detailed vector representation of fires
at Attica, Greece, in 2010

1. Extract and store the raw file metadata in an SQLite
database. This metadata describes the type of sen-
sor, the acquisition time, the spectral bands captured,
and other related parameters. Such a step is required
as one image is comprised of multiple raw files which
might arrive out-of-order.

2. Filter the raw data files, disregarding non-applicable
data for the fire monitoring scenario, and dispatch
them to a dedicated disk array for permanent storage.

3. Remotely trigger the processing chain by transferring
the appropriate spectral bands via FTP to a dedicated
machine and initiating the distinct processing steps
described in [15]. These steps are: (i) cropping the
image to keep only the area of interest, (ii) georefer-
encing to the geodetic reference system used in Greece
(HGRS 87), (iii) classifying the image pixels as “fire”
or “non-fire” using the algorithm of [4], and finally (iv)
exporting the final product to raster and vector for-
mats (ESRI shapefiles).

4. Dispatch the derived products to the disk array and
additionally store them to a PostGIS database system.

The products that are stored in PostGIS cover the geo-
graphical area of Greece and are disseminated to the end
user community (civil protection agencies, regional author-
ities, and decision makers) through a web application that
uses the interoperable tool GeoServer6 for sharing geospatial
data.

The fire pixels derived by the above processing chain have
dimensions equal to the sensor’s spatial resolution, in this
case nearly 4x4 km. Thus, MSG/SEVIRI is a low resolu-
tion observational system, compared to other very high res-
olution sensors with similar fire detection capabilities (e.g.,
WorldView-2 at 0.5 m, Quickbird at 2.4 m, IKONOS at 4 m
or Formosat-2 at 8 m), high resolution sensors (e.g., Spot-
5 at 10 m and Landsat-5 TM at 30 m), or medium resolu-
tion sensors (e.g., MODIS Terra and Aqua with 2 bands at
250 m, 5 bands at 500 m and 29 bands at 1 km). However,
the unique advantage of MSG/SEVIRI is its geostationary
orbit, which allows for a very high observational frequency
(5-15 minutes) over the same area of interest. Other satel-
lite platforms with better spatial resolution are forced to
undertake orbits that are closer to the earth, which con-
siderably reduces their revisit time. For example, Aqua

6http://geoserver.org/

MODIS, with its near-polar orbit, passes over Greece twice
a day (at 00:30 and 11:30) and the same applies for Terra
MODIS (at 9:30 and 20:30). Another important advantage
of the MSG/SEVIRI sensor is that its sensitivity is not at
all affected by its low spatial resolution, i.e., it is not nec-
essary for an entire 4x4 km pixel to be “on fire” to detect
the corresponding hotspot. A small pixel portion, exhibit-
ing increased temperature due to a wildfire, will suffice. In
conclusion, the increased five minute temporal resolution of
MSG/SEVIRI is an exceptional capability that allows civil
protection operators to have an almost real-time overview
of the situation in terms of forest wildfires. A typical ex-
ample that highlights the usefulness of the hotspot products
in Greece is shown in Figure 3. Additionally, another com-
parative advantage of MSG/SEVIRI with respect to higher
spatial resolution sensors, is the increased field of view, i.e.,
its footprint on the Earth. While, for high and very high res-
olution sensors, this is limited to 10-200 km, MSG/SEVIRI
covers with a single image most of Europe and Africa, allow-
ing for applications with a global coverage to be developed.

One of the goals of TELEIOS is to improve the hotspot de-
tection and fire monitoring service of NOA described above.
The main issues that need to be addressed are the following:

• The thematic accuracy of the generated products has
to be refined in a clear and systematic way, to ensure
the reliability and transferability of the service to other
geographic areas. The main problem with the current
thematic accuracy is the existence of false alarms and
omission errors in the fire detection technique that re-
late to the following scenarios:

– Cases of hotspots occurring in the sea or in
locations represented by fully inconsistent land
use/land cover classes, like urban or permanent
agriculture areas. If these hotspots correspond
to real fires, these fires occur in the vicinity of
coasts or urban areas, but due to the low spatial
pixel resolution of the MSG/SEVIRI instrument
and errors in image geo-referencing, the hotspots
wrongly appear to be over inconsistent underly-
ing land use/land cover classes. This type of error
could be easily corrected if derived hotspot prod-
ucts are compared with auxiliary GIS layers by
a NOA operator. However, this would certainly
require time for manual GIS layer integration and
visual interpretation, an operation that is not pos-
sible in the available 5 minute time frame.

– Cases of hotspots located outside forested areas.
These can be false fire detections due to known
problems with existing hotspot detection algo-
rithms (e.g., inappropriate fire/no-fire thresholds
in the algorithm of [4]). They can also be real
cases of fires located in big agricultural plains that
are put by farmers as part of their agricultural
practices. Whichever the case, they are not real
forest fires, and they are not emergency situations
to be handled. This type of noisy information
could be avoided if derived hotspot products are
combined together with land use/land cover infor-
mation, again an operation that cannot be done
manually in the 5 minute time frame.

– Spatial and temporal inconsistencies in the final
product. Today hotspot detection at a given time



is done by using a single image acquisition corre-
sponding to that time, without taking into con-
sideration hotspots and their locations in previous
image acquisitions, e.g., hotspots detected dur-
ing the last 1 to 2 hours. Given the inaccuracies
of existing hotspot detection algorithms [4], this
single-scene processing approach results in some
spatial and temporal inconsistencies between the
different observations. A simple heuristic, which
would result in significant noise removal, is to
check the number of times a specific fire was de-
tected over the same or near the same geographic
location during the last hour(s), considering the
observation’s temporal and spatial persistence,
and hence attributing a level of confidence to each
detected pixel.

• The need to generate added-value thematic maps
combining diverse information sources. As a service
provider NOA aims at delivering to the end-user com-
munity reliable and comprehensive information for fire
related emergency situations. Although vector shape-
files are useful for analysis in the aftermath of a crisis,
in real-time emergency response scenarios, civil protec-
tion agencies and local firefighting teams find it more
useful to refer to a map depicting the active fire-front
and its evolution in the last hours/days and identify
nearby crucial infrastructure (hospitals, schools, indus-
trial sites, fire hydrants, etc.). This is of paramount
importance for the effective allocation of resources dur-
ing the crisis. Therefore, a desired functionality that
is currently missing is automatic map generation en-
riched with easily accessible geo-information layers.

• Dispersion of the various processes of the fire monitor-
ing service in many machines and pieces of software
makes it difficult for NOA to keep all functionalities
synchronized. There is no consistent management pol-
icy, but various independent components (as seen in
Figure 2) that are glued together with the Python-
based application SEVIRI Monitor. This in not a
good solution for effectively managing the raw satel-
lite imagery, the generated products and the static GIS
layers. A more robust and user-friendly management
system is needed that will allow the integration and
customization of the available capacities.

3. IMPROVING THE FIRE MONITORING
APPLICATION OF NOA USING TELEIOS
TECHNOLOGIES

In this section we describe the implementation of the fire
monitoring service of NOA using TELEIOS technologies.
Let us describe briefly the improvements that have been
done. First, loading can be performed without any pre-
processing of raw data because the data vault module has
been developed that transforms input data into SciQL ar-
rays. Secondly, the processing chain and other operations
such as georeferencing, cropping images and classification
of measurements have been implemented using SciQL. This
leads to more expressive queries that can easily be changed
if needed. Finally, using Strabon and combining standard
products with auxiliary data enables a user to easily cre-
ate added-value thematic maps and increase their thematic
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Figure 4: The improved fire monitoring service

accuracy.
Figure 4 depicts the new fire monitoring application of

NOA developed in TELEIOS. The system consists of the
following parts:

• The data vault which is responsible for the ingestion
policy and enables the efficient access to large archives
of image data and metadata in a fully transparent way,
without worrying for their format, size and location.

• The back-end of the system. The back-end relies on
MonetDB for two tasks: (i) the implementation of the
hotspot detection processing chain (using the SciQL
front-end) and (ii) the evaluation of semantic queries
for improving the accuracy of the product shapefiles
and generating thematic maps (using a stSPARQL front-
end, i.e., Strabon).

• A geospatial ontology which links the generated
hotspot products with stationary GIS data (Corine
Land Cover, Coastline, Greek Administrative Geogra-
phy), and with linked geospatial data available on the
web (LinkedGeoData, GeoNames). This ontology is
expressed in OWL. This ontology is described in more
detail in Section 3.2.1 below.

• The front-end interface, for controlling the back-end
functionality with user-friendly tools, and disseminat-
ing the products to the end-user community. A visual
query builder is currently being developed as well to
allow NOA personnel to express complex stSPARQL
queries.

Let us now describe in more detail two of the more in-
teresting, from a database perspective, functionalities of the
fire monitoring service: the implementation of the hotspot
detection processing chain using data vaults and SciQL, and
the use of stSPARQL to query the generated products and
to combine them with other geospatial data.

3.1 The processing chain
The processing chain as described in Section 2 comprises

of the following submodules: (a) ingestion, (b) cropping,
(c) georeference, (d) classification, and (e) output genera-
tion. All submodules are implemented inside the MonetDB
DBMS using SciQL. In the following we describe each of
them in detail.



3.1.1 Loading
One of the major issues that arise when dealing with earth

observation data is the abundance of available file formats.
In this particular application the input format is High Rate
Information Transmission (HRIT) or Low Rate Informa-
tion Transmission (LRIT). These are the CGMS standards
agreed upon by satellite operators for the dissemination of
digital data originating from geostationary satellites to users
via direct broadcast. Loading such data requires an external
program that transforms the original satellite image format
into a representation as table or array that the DBMS can
handle. The reason therefore is that DBMSs in general do
not know anything about any external file formats. Thus,
the knowledge of how to convert a given file format into a
relational table or an array needs to be available and kept
outside the DBMS. This can be a major hurdle, not only
in terms of inconvenience for the user, but also in terms of
performance. All external files that are to be loaded into
the database first need to be converted entirely, even if not
all files, or not all data of each file, to the appropriate for-
mat required for query processing at a subsequent stage. As
a first solution, we exploited the extensibility of MonetDB
and developed an extension module that can load a satel-
lite image given as HRIT file into an SQL table or SciQL
array. The module provides a user-defined SQL/SciQL func-
tion ”HRIT load image()” that returns the table/array. The
function expects as parameters URIs indicating the location
of the respective image files. A similar function, returning an
SQL table, is responsible for reading image metadata such
as number of rows, columns and bands.

The Data Vault goes one step further, into a more generic
solution that addresses the principal problem of ingestion of
data from external file formats into database tables or ar-
rays. The main idea of the Data Vault is to make the DBMS
aware of external file formats and keep the knowledge how to
convert data from external file formats into database tables
or arrays inside the database. With this, inserting external
files (of known format) into the database basically consists
of copying the files ”as-is” into a directory that is under ex-
clusive control of the database. Only after issuing queries
that actually access data of a certain file, the DBMS will
take care of loading the data from the file into the respec-
tive table or array.

3.1.2 Cropping and georeference
The classification algorithm used for the fire monitoring

application requires as input IR bands 3.9 and 10.8. Follow-
ing the data loading step, both bands are stored into a SciQL
array. The input of these two bands is subsequently trans-
formed into temperature values. Thus, it is safe to assume
that the input looks like the arrays created by the following
SciQL statements:

CREATE ARRAY hrit_T039_image_array
(x INTEGER DIMENSION, y INTEGER DIMENSION, v FLOAT);

CREATE ARRAY hrit_T108_image_array
(x INTEGER DIMENSION, y INTEGER DIMENSION, v FLOAT);

NOA is interested only in a specific part of the image that
is received from the satellite. Cropping only the relevant
parts of the image which contain the area of interest is per-
formed in a straightforward manner using a range query.
Cropping the image early on, significantly reduces the input
size of the remaining image processing operations and thus
the time required for the execution of the processing chain.

CREATE ARRAY hrit_T039_image_array
(x INTEGER DIMENSION, y INTEGER DIMENSION, v FLOAT);

CREATE ARRAY hrit_T108_image_array
(x INTEGER DIMENSION, y INTEGER DIMENSION, v FLOAT);

SELECT [x], [y],
CASE
WHEN v039 > 310 AND v039 - v108 > 10 AND v039_std_dev > 4 AND

v108_std_dev < 2
THEN 2
WHEN v039 > 310 AND v039 - v108 > 8 AND v039_std_dev > 2.5 AND

v108_std_dev < 2
THEN 1
ELSE 0
END AS confidence
FROM (
SELECT [x], [y], v039, v108,
SQRT( v039_sqr_mean - v039_mean * v039_mean ) AS v039_std_dev,
SQRT( v108_sqr_mean - v108_mean * v108_mean ) AS v108_std_dev
FROM (
SELECT [x], [y], v039, v108,
AVG( v039 ) AS v039_mean, AVG( v039 * v039 ) AS v039_sqr_mean,
AVG( v108 ) AS v018_mean, AVG( v108 * v108 ) AS v108_sqr_mean
FROM (
SELECT [T039.x], [T039.y], T039.v AS v039, T108.v AS v108
FROM hrit_T039_image_array AS T039
JOIN hrit_T108_image_array AS T108

ON T039.x = T108.x AND T039.y = T108.y
) AS image_array
GROUP BY image_array[x-1:x+2][y-1:y+2]
) AS tmp1;
) AS tmp2

Figure 5: Fire detection algorithm in SciQL

After the cropping operation the algorithm georeferences
the image by transforming it to a new image where the lo-
cation of each pixel is well known. The MSG satellite is
geostationary, so in effect remains stationary above a point
on the earth. Thus, after the necessary transformation has
been calculated by hand, every image can be transformed
in exactly the same way. The NOA application resamples
the image into a slightly larger size and applies a two degree
polynomial in order to map pixels of the old image to the
pixels of the new image. The coefficients of the polynomial
as well as the target image dimensions are all precalculated.
The implementation of these operations is expressed in a
very concise way using SciQL.

3.1.3 Classification
The fire classification module of the processing chain re-

ceives as input the cropped, resampled and georeferenced
image with the two pixel temperatures, each derived from
one band. The algorithm [4] slides a 3x3 window over ev-
ery pixel of the image and computes the standard deviation
of the temperatures inside the window. Figure 5 shows the
classification algorithm in SciQL.

The query first computes for each pixel the standard de-
viation for each of the two bands. It uses the structural
grouping capabilities of the SciQL, in order to gather for
each pixel the values of its neighbors inside a 3x3 window.
The classification process outputs a per-pixel value of 0, 1,
or 2. The value 2 denotes fire, value 1 denotes potential fire
while 0 denotes no fire. The decision is based on threshold-
ing. A set of 4 thresholds, one for the temperature of the IR
3.9 band, one for the difference between the temperatures
of the IR 3.9 and the IR 10.8 band, and two for the stan-
dard deviations of the two temperatures, are used for the
classification of the pixel. The actual choice of thresholds
used in the figure are those for an image acquired during



the day. During the night a different set of thresholds is
used. âĂIJDayâĂİ is defined with a local solar zenith angle
lower than 70◦ while âĂIJnightâĂİ with a solar zenith an-
gle of higher than 90◦. For solar zenith angles between 70◦

and 90◦ the thresholds are linearly interpolated. While not
shown in the query, the solar zenith angle is computed on
a per-pixel basis given the image acquisition timestamp and
the exact location of the pixel which is already known after
the georefencing step.

3.1.4 Output generation
The final output is produced by a SciQL query which se-

lects pixels classified as fire or potential fire and outputs a
POLYGON description in Well-known Text (WKT) format.
The location of each pixel is already known after the georef-
erence step and its shape is a 4x4 km square.

3.2 stRDF and stSPARQL in the NOA appli-
cation

In TELEIOS, standard products produced by processing
chains of EO data centers can be combined with auxiliary
data to offer to users functionalities that go beyond the ones
currently available to them (see Figure 1(b)). In this section
we give concrete examples of this by showing how to im-
prove the outputs of the hotspot detection processing chain
discussed above. We start by presenting an ontology for an-
notating NOA standard products. Then, we present one by
one all the geospatial datasets utilized in the fire monitoring
application. Last, we present stSPARQL queries that im-
prove the accuracy of NOA standard products and enable
us to produce rich thematic maps.

3.2.1 Ontology for NOA standard products
To annotate semantically standard products produced by

the hotspot detection processing chain of NOA, we have de-
veloped an ontology (called the NOA ontology from now
on). The ontology is encoded in OWL and it is publicly
available7. The main classes of the current version of the
NOA ontology, which is depicted graphically in Figure 6,
are RawData, Shapefile, and Hotspot which represent files
with raw data (e.g., sensor measurements), ESRI shapefiles
which are the outputs of the hotspot detection processing
chain and hotspots which are extracted from shapefiles, re-
spectively. For interoperability purposes, these classes have
been defined as subclasses of corresponding classes of the
SWEET8 ontology. Each instance of these three classes is
annotated with the satellite and the sensor from which it
is derived, as well as with the date and time at which it
was detected. Products (instances of Hotspot and Shape-

file) are also annotated with the method (processing chain)
which was used for their production and with the organiza-
tion which is responsible for the production (e.g., NOA). For
each file (instances of Shapefile and RawData) its filename
is stored. Finally, hotspots are additionally annotated with
a spatial literal and a numeric (float) literal. The former
corresponds to the region (pixel) where the hotspot lies and
the latter indicates the confidence that a pixel is a hotspot.

3.2.2 Hotspot data

7http://www.earthobservatory.eu/ontologies/
noaOntology.owl/
8http://sweet.jpl.nasa.gov/ontology/

Figure 6: An ontology for NOA products

The result of the processing chain described in Section 3.1
is a collection of shapefiles. These files hold information
about the coordinates of detected fire locations, the date
and time of image acquisition, the level of reliability in the
observations, and the names of the processing chain and
the sensor that was used for the acquisition. To be able to
query these shapefiles using stSPARQL and combine them
with linked data available freely on the web, the produced
shapefiles are first transformed into RDF. Due to the simple
form of the shapefiles, each attribute of a shapefile becomes
a predicate, each attribute value becomes an object and fi-
nally a subject is created as a unique URI identifying the
corresponding hotspot. The following triples are an exam-
ple of such information about a hotspot.

noa:Hotspot_1 a noa:Hotspot ;
noa:hasAcquisitionDateTime "2007-08-24T18:15:00"^^xsd:dateTime;
noa:hasConfidence 1.0 ; noa:hasConfirmation noa:confirmed ;
strdf:hasGeometry "POLYGON ((21.52 37.91,21.57 37.91,21.56
37.88,21.56 37.88,21.52 37.87,21.52 37.91))"^^strdf:geometry ;
noa:isDerivedFromSensor "MSG2"^^xsd:string ;
noa:isProducedBy noa:noa ;
noa:isFromProcessingChain "cloud-masked"^^xsd:string .

3.2.3 Auxiliary data
We now give a short description of the auxiliary datasets

utilized in the fire monitoring application.

Corine Land Cover. The Corine Land Cover project9 is
an activity of the European Environment Agency that col-
lects data regarding the land cover of European countries.
The project uses a hierarchical scheme with three levels to
describe land cover. The first level indicates the major cat-
egories of land cover on the planet, e.g., forests and semi-
natural areas. The second level identifies more specific types
of land cover, e.g., forests, while the third level narrows down
to a very specific characterization, e.g., coniferous forests.
The land cover of Greece is available as an ESRI shapefile
that is based on this classification scheme. This shapefile
is transformed in RDF as follows. Every land cover type is
represented with a class (e.g., ConiferousForest), and the
hierarchy of land cover types is expressed with the respec-
tive class taxonomy. For each specific area in the shapefile,
a unique URI is created and it is connected with an instance
of the third level. Additionally a property of each area with

9http://www.eea.europa.eu/publications/COR0-
landcover/



value a spatial literal indicates its geometry. Some sample
triples representing such an area are shown below.

clc:Area_45 a clc:Area ;
strdf:hasGeometry "POLYGON ((22.07 40.62,

..., 22.07 40.62))"^^strdf:geometry ;
clc:hasLandUse clc:coniferousForest .

Coastline of Greece. This is an ESRI shapefile describing
the geometry of the coastline of Greece. For each polygon
contained in the shapefile, a unique URI is created and a
spatial literal is attributed to it. The spatial literal corre-
sponds to the closed polygon which defines the underlined
area. For example:

coast:Coastline_1 a coast:Coastline ;
strdf:hasGeometry "POLYGON ((24.12 34.80, ...,

24.12 34.80))"^^strdf:geometry .

Greek Administrative Geography. This is an ontology
that describes the administrative divisions of Greece (pre-
fecture, municipality, district, etc.). The ontology has been
populated with relevant data that are available in Greek
open government data portal10. For each administrative
unit in the ontology (e.g., a municipality) various pieces of
information are available (e.g., population and geographical
boundaries). The following is a small example of such kind
of information for the municipality of Athens.

gag:munAthens a gag:Municipality ;
rdfs:label "Athens" ;
gag:hasPopulation "655780"^^xsd:integer ;
gag:isPartOf gag:preAttica ;
strdf:hasGeometry "POLYGON((23.74,38.03, ...,

23.74,38.03))"^^strdf:geometry .

LinkedGeoData. LinkedGeoData (LGD)11 is a project fo-
cused on publishing OpenStreetMap (OSM)12 data as linked
data. OSM maintains a global editable map that depends on
users to provide the information needed for its improvement
and evolution. The respective ontology is derived mainly
from OSM tags, i.e., attribute-value annotations of nodes,
ways, and relations. A sample from the LGD dataset de-
scribing a fire station is shown in the following triples.

lgd:node1119854639 a lgdo:Amenity, lgdo:FireStation, lgdo:Node;
lgdo:directType lgdo:FireStation ;
rdfs:label "Fire Service of Stagira - Akanthos" ;
strdf:hasGeometry "POINT(23.8778 40.4003)"^^strdf:geometry .

GeoNames. GeoNames13 is a gazetteer that collects both
spatial and thematic information for various placenames
around the world. GeoNames data is available through vari-
ous Web services but it is also published as linked data. The
features in GeoNames are interlinked with each other defin-
ing regions that are inside the underlined feature (children),
neighboring countries (neighbors) or features that have cer-
tain distance with the underlined feature (nearby features).
A sample from the GeoNames dataset describing the city of
Patras is shown in the following triples.

10http://geodata.gov.gr/
11http://linkedgeodata.org/
12http://www.openstreetmap.org/
13http://www.geonames.org/

<http://sws.geonames.org/255683/> a gn:Feature ;
gn:alternateName "Patrae", "Patras"@en ;
gn:name "Patras" ; gn:countryCode "GR" ;
gn:featureClass gn:P ; gn:featureCode gnP.PPLA ;
gn:parentADM1 <http://sws.geonames.org/6697810/> ;
gn:parentCountry <http://sws.geonames.org/390903/> ;
strdf:hasGeometry "POINT(21.73 38.24)"^^strdf:geometry .

3.2.4 Improving hotspot products using linked data
Let us now see how the datasets presented above can be

combined to improve the thematic accuracy of the gener-
ated hotspot products enabling the automatic generation of
related thematic maps.

Improving the thematic accuracy. The thematic accu-
racy of the shapefiles generated by the processing chain is
improved by an additional processing step that refines them
by correlating them with auxiliary geospatial data. This is
done by a series of stSPARQL update statements that up-
date the RDF representation of the generated shapefiles by
taking into account relevant RDF data sets from the ones
presented above. As an example, consider the following up-
date query.

DELETE {?h ?property ?object}
WHERE {
?h a noa:Hotspot; strdf:hasGeometry ?hGeo; ?hProperty ?hObject.
OPTIONAL {?c a coast:Coastline ; strdf:hasGeometry ?cGeo .
FILTER (strdf:anyInteract(?hGeo, ?cGeo))}
FILTER(!bound(?c))}

The condition in the first FILTER pattern of this state-
ment utilizes the function strdf:anyInteract which checks
if two spatial literals intersect with each other, while the con-
dition in the second FILTER pattern ensures that retrieved
hotspots do not intersect with land. Thus, it retrieves and
deletes hotspots lying entirely in the sea. Similarly, the fol-
lowing update statement retrieves hotspots that partially lie
in the sea and deletes the part of their geometry that lies in
the sea.

DELETE {?h strdf:hasGeometry ?hGeo}
INSERT {?h strdf:hasGeometry ?dif}
WHERE {

SELECT DISTINCT ?h ?hGeo
(strdf:intersection(?hGeo, strdf:union(?cGeo)) AS ?dif)

WHERE { ?h a noa:Hotspot ; strdf:hasGeometry ?hGeo .
?c a coast:Coastline ; strdf:hasGeometry ?cGeo .
FILTER(strdf:anyInteract(?hGeo, ?cGeo))}

GROUP BY ?h ?hGeo
HAVING strdf:overlap(?hGeo, strdf:union(?cGeo))}

In the above query, the spatial aggregate function
strdf:union of stSPARQL is utilized. For each hotspot
all coastline regions that intersect with it are grouped and
their union is calculated. Afterwards the part that is not
contained in this union is deleted from the geometry of the
hotspot.

Improving automatic map generation. In Section 2 we
explained that the automatic generation of fire maps en-
riched with relevant geo-information is of paramount impor-
tance to NOA since the creation of such maps in the past has
been a manual process. Using an stSPARQL endpoint where
the RDF datasets described above reside, a NOA operator
can now simply overlay the retrieved data using some GIS
software (e.g., QGIS or GoogleEarth). For example, by pos-
ing the following queries and overlaying their results, NOA
operators can create a map like the one shown in Figure 7
that exploits information from the above datasets.



Figure 7: A map that can be created by overlaying data computed by stSPARQL queries

Query 1: “Get all hotspots in southeastern Peloponnese
that were detected from 23rd to 26th of August 2007”
(from Hotspot data).

Query 2: “Get the land cover in southeastern Peloponnese”
(from Corine Land Cover data).

Query 3: “Get all primary roads in southeastern Pelopon-
nese” (from LinkedGeoData).

Query 4: “Get all capitals of prefectures of southeastern
Peloponnese” (from GeoNames).

Query 5: “Get all municipality boundaries in southeast-
ern Peloponnese” (from Greek Administrative Geog-
raphy).

Due to space considerations, we give only Query 4 in
stSPARQL:

SELECT ?n ?nName ?nGeo
WHERE { ?n a gn:Feature ;

strdf:hasGeometry ?nGeo ;
gn:name ?nName ; gn:featureCode gn:P.PPLA .

FILTER(strdf:contains("POLYGON((21.67 36.87, 22.74 36.87,
22.74 37.68,21.67 37.68,21.67 36.87))"^^strdf:geometry, ?nGeo))}

This query asks for every feature in the GeoNames
dataset that is contained in a specific rectangle covering
southeastern Peloponnese and its gn:featureCode equals
to gn:P.PPLA, i.e., the feature is a first-order administra-
tive division (for Greece this corresponds to capitals of pre-
fectures). Apart from thematic information about a node
(variables ?n and ?nName), the geometry (variable ?nGeo) of
the feature is also returned so it can be depicted on a map.

4. RELATED WORK
TELEIOS is a multidisciplinary research effort bringing

together contributions from database management, seman-
tic web, remote sensing and knowledge discovery from satel-
lite images. We now review some of the most relevant re-
search efforts in these areas, and compare them with the
work carried out in TELEIOS which has been presented in
this paper.

With respect to systems offering array query process-
ing capabilities there are only few systems that can han-
dle sizable arrays efficiently. RasDaMan [2] is a domain-
independent array DBMS for multidimensional arrays of ar-
bitrary size and structure. RasDaMan provides a SQL-92
based query language, RasQL [1], to manipulate raster im-
ages using foreign function implementations and provides
raster web services which are based on OGC standards. Such
web services are beyond the scope of TELEIOS. A recent
attempt to develop an array database system from scratch
is undertaken by the SciDB group [16]. Its mission is the
closest to SciQL, but Version 0.5 and the design documents
indicate that their language is a mix of SQL syntax and
algebraic operator trees, instead of a seamless integration
with SQL:2003 syntax and semantics. SciQL takes language
design a step further by providing a seamless symbiosis of
array-, set-, and sequence- interpretation using a clear sep-
aration of the mathematical object from its underlying im-
plementation. A key innovation of SciQL is the extension
of value-based grouping in SQL:2003 with structural group-
ing which leads to a generalization of window-based query
processing with wide applicability in science domains.

In the context of the Semantic Web, the development of
geospatial extensions to SPARQL has received some atten-
tion recently which resulted in the creation of a forthcom-
ing OGC standard for querying geospatial data encoded in
RDF, called GeoSPARQL [10]. GeoSPARQL draws on the
concepts developed in earlier languages such as SPARQL-
ST [11], SPAUK [6] and the original version of stSPARQL
[8].

There have been some works in the past where ontologies
have been applied to the modeling of EO data [12, 3] or
in a similar virtual observatory context [13, 9]. TELEIOS
has benefited from the modeling concepts developed in these
efforts and has tried to re-use parts of these public ontologies
whenever possible.

In the area of remote sensing, most of the fire detection al-
gorithms using MSG/SEVIRI data are based on variations
of EUMETSAT’s classification methodology [4] (EUMET-
SAT is the European organization managing the Meteosat
series of geostationary meteorological satellites). The pre-
TELEIOS approach used by NOA for this problem has been
discussed in detail in [15, 7].



Finally, the vision of having knowledge discovery and data
mining from satellite images as a fundamental capability of
information systems for today’s EO data centers has been
stressed in earlier project KEO/KIM14 funded by the Eu-
ropean Space Agency, and the US project GeoIRIS [14].
Compared to these projects, TELEIOS has a much stronger
technical foundation because it builds on state of the art
database and semantic web technologies, as well as more
advanced knowledge discovery and data mining techniques.

5. CONCLUSIONS
In this paper we report on a virtual earth observatory

that we are currently building in the context of the Euro-
pean project TELEIOS. Given the rapidly growing Earth
Observation data archives, TELEIOS addresses the need
for scalable access to petabytes of Earth Observation data
and the discovery of knowledge that can be used in ap-
plications. To achieve this, TELEIOS aims at leveraging
and extending data management technologies. The main
focus is on scientific database technologies (array databases,
SciQL, data vaults) and on geospatial Semantic Web tech-
nologies (stRDF and stSPARQL). Using a forest fire moni-
toring application as representative example, we discuss in
detail how the developed technologies, integrated into Mon-
etDB, a state-of-the-art open-source column-store database
system, can be deployed to support and improve processing
of large-scale Earth Observation data. While focusing on
Earth Observation within the TELEIOS project, we are con-
fident that the developed technologies can also be deployed
in other scientific disciplines like astronomy, meteorology,
seismology, biology, etc.
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