

EXPECTEDSION R ERATOSTHENES:

Excellence Research Centre for Earth Surveillance & Space-Based Monitoring of the Environment

Earth Observation assimilation for real time flood monitoring and response

@excelsior2020eu

🖻 🍉 🧰 🤅

Alexia TSOUNI National Observatory of Athens / IAASARS / BEYOND Center

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 857510.

This project has received funding from the Government of the Republic of Cyprus through the Directorate General for the European Programmes, Coordination and Development.

The BEYOND Center of EO Research & Satellite Remote Sensing

The services of the BEYOND Center

24/7 Real-Time Forest Fire Monitoring service - Diachronic Burnt Scar Mapping (> 35 years) - Fire Risk assessment (http://beyond-eocenter.eu/index.php/web-services/firehub)

Detection and diffusion of desert dust, dust, volcanic ash and toxic gases http://beyond-eocenter.eu/index.php/web-services/dusthub

Rapid Flood Mapping - Diachronic Flood Mapping - Flood monitoring and early warning (http://beyond-eocenter.eu/index.php/web-services/floodhub)

Early warning and monitoring of geophysical disasters (earthquakes, landslides, volcanic eruptions) - Ground Displacement Mapping (http://beyond-eocenter.eu/index.php/web-services/geohub)

ClimaHUB

EYWA

Solar Atlas Service - Solar Energy Nowcasting Service - Short-term Forecasting System (http://beyond-eocenter.eu/index.php/web-services/solarhub)

Data Extraction Application for Regional Climate (http://beyond-eocenter.eu/index.php/web-services/climahub)

COVID - 19

(http://beyond-eocenter.eu/index.php/web-services/eywa) **Global spread monitoring of the COVID-19 pandemic** (http://beyond-eocenter.eu/index.php/web-services/covid-19)

Early Warning System for Mosquito Borne Diseases

The monitoring systems of the BEYOND Center

Floods: the deadliest type of disaster 43.5% of deaths in 2019 (CRED 2020)

Occurrence by disaster type: 2019 compared to 2009-2018 annual average

343 2009 to 2018

Floods: the deadliest type of disaster 43.5% of deaths in 2019 (CRED 2020)

Total disaster events by type: 1980-1999 vs. 2000-2019

Mandra flood 2017: Setup of an integrated web GIS platform

Disaster Resilience Action Group

Analysis of the flood in west Attica on 15/11/2017

Roing Objying to my Reparrounds 1.2.2.4.6.3 dl. Astrophysics - For the Instructions and the References 1.2.3.4.6.3 see Details

E YrdyAnjub D Astroutpass

Kelowa anucia - Critical points

cross sectors.

fomoecolicc - Locations

Gunoypapire Photos

Επικαιροποτημένο υδρογραφικό δίκτισ -Updated hydrographic network (1)

- As down a tudy on a copulate -Uncovered parts of watercourses
- Κάλυμμανα τμήματα ρέματων Covered parts of watercourses

Παλαιότερη φυτική μαή μεράτων howoft is uten is night of watercourses

Χαρτονοσαιμένη έκταση πλημμόρος -Mapped flood extent (2)

Προσομοιερίνη έκταση πληριώρας Simulated flood extent (3)

Agrich cebergon - Urban expansion

Mandra flood 2017: modelling (blue) vs EO mapping (pink)

XPOL-NOA accumulated rainfall (mm)

14-Nov-2017 13:49 to 15-Nov-2017 12:00 UTC

Disaster Resilience Action Group

An integrated near-realtime flood monitoring system:

- based on modeling, multi-source EO and crowdsourced data
- with a fully scalable and transferable modular architecture
- delivering a reliable
 operational awareness
 picture of the crisis every
 5-15 minutes to all the
 relevant authorities

Near-real-time ingestion and assimilation of:

- hydrometeorological parameters measured at 3 in-situ telemetric stations (installed at 3 critical locations)
- satellite data (e.g. from high resolution Sentinels collected from the Hellenic Mirror Site)
- crowdsourced data (collected via the dedicated crowdsourcing platform).

Mandra 2020: Development of the operational FloodHUB system

Procurement and installation of 3 telemetric hydrometeorological stations with co-funding by the Hellenic Petroleum S.A. and the SMURBS/ERA-PLANET project, in collaboration with the Attica Region

Upgrade in the framework of the **CLIMPACT** project

Web platform of the 3 telemetric hydrometeorological stations

Web platform of the 3 telemetric hydrometeorological stations

Web platform of the 3 telemetric hydrometeorological stations

EXCELSIOR ERATOSTHENES: Excellence Research Centre for Earth Surveillance & Space-Based Monitoring of the Environment Web platform of the 3 telemetric hydrometeorological stations

METEOVIEW ₂								
day is: 11/05/20, 16:22	Άγιος Αθανάσιος	<						
Search here Q	Μάνδρα-Εκτροπή		Date Interval:	Date From* Tin	ne from Date Te	o* Time to		
			Choose Interval 🐱	0	0:00	23:59		
AIN NAVIGATION	Μάνδρα-Κόμβος		Sensors*					
Home			average surface velocity	Water level	Discharge	Barometric Pressure		
Data			Air temp	Relative humidity	Ηλιακή ακτινοβολ	Vind direction		
Notifications			Wind speed	Rainfall	Battery supply			
	-		Single Y Axis					
Files			Compare to concern of other	atationa				
Users		City: Μανορα Territory: Μάνδρα	Select one or more stations to compare					
Settings 👻		Installation Time: 07/24/20						
		Live Photos						
Defrech			View per: Total Minute	es Hour Day N	Veek Month Yea	r Chart -		
ign out in: 59:21 <u>Heiresin</u>	The REVOND	Contor of Excol	lanca can now nr	ovido to the	rolovant o	porational bodi		
	THE BLIOND	Center of Excen	ience can now pro			perational bour		

EXECTES R ERATOSTHENES: Excellence Research Centre for Earth Surveillance & Space-Based Monitoring of the Environment Real-time crowdsourcing platform for staff and volunteers BEYOND FloodHUB X 🖪 FloodHUB Crowd Source Portal X + K FloodHub floodhub.beyond-eocenter.eu/floodHub/#/pages/floods C BEYOND FloodHUB 🔡 DASHBOARD 👫 HOME 🔝 FLOODS 🚯 ABOUT 🚳 SETTINGS - 👼 LOGOUT 🔒 LOCK 🚛 EN Send Report PUEID a232c741-f2b3-44ac-9443-73b596106b5b OWNER PORTALADMIN TIME 2020-10-05T12:25:30.292582 Select Scenario Pnt: 5/5 | T = 100 | Dur. = 540 | CN= 2 **CN** Parameter Repeat Period Duration (h) II (Med Cond) **v** 9

Integrated near-real-time flood monitoring system

stics WEB GIS PLATFORM COVID-19 - ΣΥΜΜΕΤΟΧΗ ΔΗΜΩΝ

Web GIS platform for daily monitoring the global spread of the COVID-19, actively providing information about the pandemic

BEYOND THEMATIC AREAS

Agriculture

Agriculture monitoring, for the purposes of food security, control of the implementation of sustainable agriculture policies and the improvement of the overall agricultural productivity.

Read more

Disasters

The rapid changes in climate over the last decades, together with the explosion of human population, have shaped the context for a fragile biosphere, prone to natural and manmade disasters that result in massive flows of environmental immigrants.

Read more

Energy

WEB SERVICES

Climate

Integrated near-real-time flood monitoring system

BEYOND FloodHUB

A HOME 🚮 FLOODS 🚯 ABOUT 🧰 REGISTER 👼 LOGIN 🔳 EN

* EGA BEYOND Centre of ED Research & Satellite Remote Sensing FloodHUB

Integrated near-real-time flood monitoring system

57 km² SUBBASINS 19

RIVER BASIN

RAINFALL IDF CURVE Koutsoyiannis & Baloutsos, 2000 $i (d,T) = 40.6 (T^{0.185} - 0.45) / (d + 0.189)^{0.796}$

DISTRIBUTION Worst profile method

TIME OF CONCENTRATION Kirpich (SCS) method

HYDROLOGIC MODELING: **HEC-HMS** (free & open access)

Input: rainfall data through **HEC-DSS** for various combinations of return periods T (years) and rainfall duration d (hours)

SCS-CN (Curve Number) method for extracting the excess from the gross rainfall, and the unit hydrograph, for propagating the surface runoff to the basin outlet

Run: all scenarios

Output: flow hydrographs

HYDROLOGIC MODELING: HEC-HMS (free & open access)

Input: rainfall data through **HEC-DSS** for various combinations of return periods T (years) and rainfall duration d (hours)

SCS-CN (Curve Number) method for extracting the excess from the gross rainfall, and the unit hydrograph, for propagating the surface runoff to the basin outlet

<u>Run</u>: all scenarios

Output: flow hydrographs

HYDRAULIC MODELING: HEC-RAS (free & open access)

Input:

* flow hydrographs for each stream of the hydrographic network * banks and road network through breaklines * DEM at 2m spatial resolution provided by the National Cadastre and Mapping Agency SA of Greece

Run: All scenarios at 10m spatial resolution (2D mesh)

Output: flood extent

Antecedent Soil Moisture Conditions	T = 50 years	T = 100 years	T = 200 years	T = 500 years	T = 1000 years
CN I Dry conditions	T50 CNI D3	T100 CNI D3	T200 CNI D3	T500 CNI D3	T1000 CNI D3
	T50 CNI D6	T100 CNI D6	T200 CNI D6	T500 CNI D6	T1000 CNI D6
	T50 CNI D9	T100 CNI D9	T200 CNI D9	T500 CNI D9	T1000 CNI D9
CN II Average conditions	T50 CNII D3	T100 CNII D3	T200 CNII D3	T500 CNII D3	T1000 CNII D3
	T50 CNII D6	T100 CNII D6	T200 CNII D6	T500 CNII D6	T1000 CNII D6
	T50 CNII D9	T100 CNII D9	T200 CNII D9	T500 CNII D9	T1000 CNII D9
CN III Wet conditions	T50 CNIII D3	T100 CNIII D3	T200 CNIII D3	T500 CNIII D3	T1000 CNIII D3
	T50 CNIII D6	T100 CNIII D6	T200 CNIII D6	T500 CNIII D6	T1000 CNIII D6
	T50 CNIII D9	T100 CNIII D9	T200 CNIII D9	T500 CNIII D9	T1000 CNIII D9

Mandra flood 2017: modelling (blue) vs EO mapping (pink)

Pink: VHR satellitebased mapping (Meteoview)

Blue: Simulation of flood scenario T1000 CNIII **d6**

FloodHUB system in support of the decision makers

In line with the requirements for the implementation of the:

✓ EU Floods Directive 2007/60/EC "on the assessment and management of flood risks"

BEYAND

FloodHUB

- ✓ Sendai Framework for Disaster Risk Reduction
- ✓ UN SDGs:

✓ GEO's Societal Benefit Areas:

Stakeholders' trainings in the operational FloodHUB system

1144

The BEYOND Center of EO Research & Satellite Remote Sensing

Thank you for your attention!

Acknowledgements

The EXCELSIOR project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 857510.

CONSORTIUM

The EXCELSIOR project has received funding from the Government of the Republic of Cyprus through the Directorate General for the European Programmes, Coordination and Development.

@excelsior2020eu

E-MAIL: WEBSITE: info@excelsior2020.eu www.excelsior2020.eu

Copyright © 2019 | EXCELSIOR, All rights reserved.