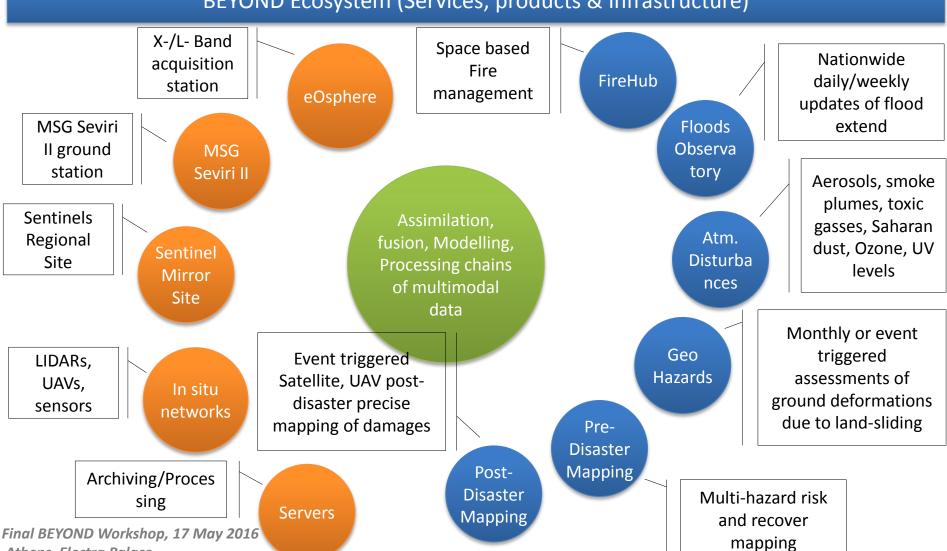


DisasterHub

A mobile application for enabling crowd generated data fusion in Earth Observation disaster management

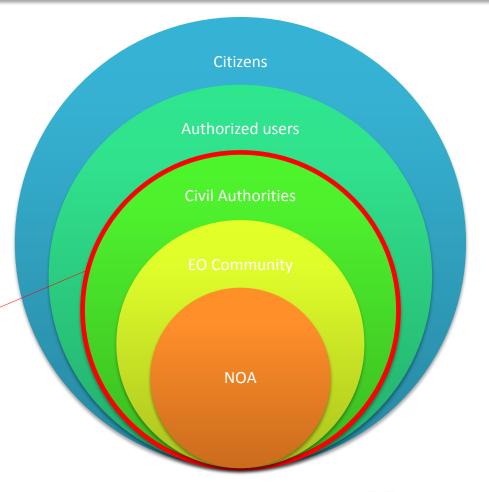
Mr. Vassilis TSIRONIS
Mr. Themistocles HEREKAKIS
Mrs. Alexia TSOUNI
Dr. Haris KONTOES


Institute for Astronomy & Astrophysics, Space Applications and Remote Sensing
National Observatory of Athens
Greece

Athens, Electra Palace

Building a Centre of Excellence for EO-based monitoring of Natural Disasters

BEYOND Ecosystem (Services, products & infrastructure)



What is the gap?

❖ Communication gap between the BEYOND ecosystem and those either directly concerned by natural disasters, i.e. the citizens or are responsible for managing them.

The outreach of most services hit this wall

How are we going to fill the gap?

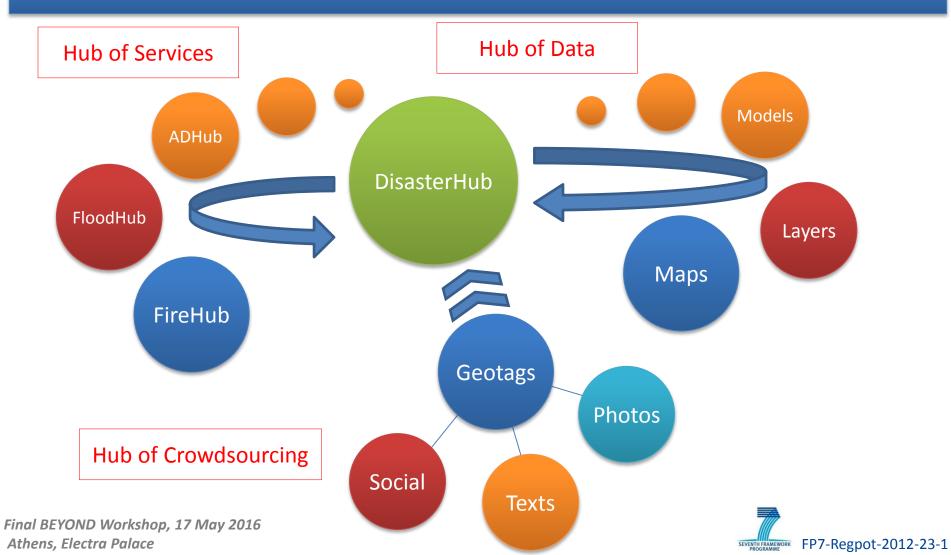
- Our answer is the DisasterHub mobile application.
- ❖ DisasterHub will fill in this gap by introducing a mobile application that will act as a middleware between a mobile user and the rich suite of the BEYOND EO services, building on the concept of citizen observatories in support of Copernicus, GEO, GEOSS, and UN-SPIDER.

DisasterHub – The idea

- What is the idea behind DisasterHub?
- ❖ To provide the citizens with an easy to use mobile app that will bring them closer to the EO services of the BEYOND ecosystem and will also allow them to interact with these services.
- What is our ultimate goal?
- To build a tool that will allow us to:
 - Integrate all the services under a common, portable platform.
 - Integrate open geospatial and socioeconomic data, via open/linked data ingestion mechanisms (APIs).
 - iii. Develop the techniques that will enable the fusion and co-registration of crowd generated information with EO data, in order to further enhance the disaster management services.

DisasterHub – The initiative

- The MYGEOSS Second Call For Innovative Apps in the environmental and social domains (http://digitalearthlab.jrc.ec.europa.eu/mygeoss/call.cfm)
- DisasterHub was among the 15 best application proposals and awarded a contract by the JRC for further development.
- Presentation of a first stable release at the 10th GEO European Projects Workshop, 31 May
 02 June 2016, Berlin.
- ❖ Final deliverables & reports in the middle of June.



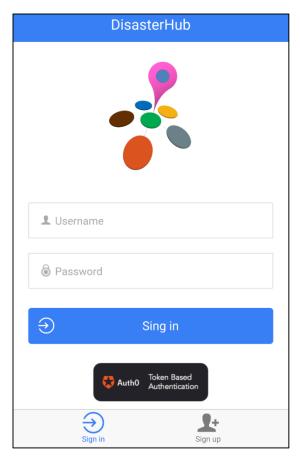
DisasterHub – The architecture

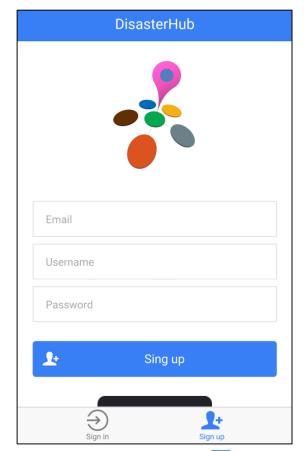
- Recapping
- DisasterHub is going to integrate:
 - ☐ All the services of the BEYOND ecosystem.
 - ☐ Open geospatial and socioeconomic data (e.g. GEOSS Data CORE).
 - ☐ Crowd generated data.
- So what is the design paradigm of the DisasterHub architecture?
- DisasterHub is going to introduce a Hub of hubs comprised of:
 - ☐ A hub of services.
 - ☐ A hub of data.
 - ☐ A hub of crowdsourcing information.

DisasterHub – A Hub of hubs

DisasterHub – A Hub of hubs

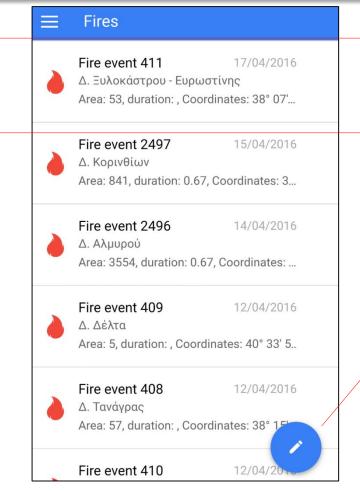
- ❖ Development: started on Feb. 2016, ongoing.
- Current status: internal beta testing.
- Basic functionalities implemented:
 - Integration of the *Copernicus masters* awarded FireHub service (http://www.copernicus-masters.com/index.php?kat=winners.html&anzeige=winner_bsc2014.html). The user gets a real time feed of forest fires taking place, and also can search into the archive for past events.
 - A geo-tagging mechanism where the user can notify the other users for a hazardous event by placing a marker on the map that indicates the location of the event. He may accompany this location with more information such as:
 - A photo.
 - A short text information (max. 500 chars).
 - An emergency alert (e.g. people in danger).
 - ☐ A social sharing mechanism of the geotags.


DisasterHub — The app (cont'd)


- **❖** Basic functionalities implemented (cont'd):
 - ☐ Integration of several OGC compliant open data, accessible through WMS and WFS services:
 - Backgrounds: OSM, MapQuest Sat, Very High Resolution Aerial Images of Greece from National Cadastre Services(EKXA VLSO).
 - Overlays: Corine Land Cover, Natura 2000, Urban Atlas, Toponyms, several Spatio-temporal layers provided from FireHub and generated through the satellites images acquired from MSG Seviri II and polar orbiting satellites such as Aqua/Terra MODIS, NPP VIIRS, NOAA AVHRR, etc.
 - □ An elaborate authentication mechanism for securing the user's privacy that is based on JSON Web Tokens. This mechanism users the services of Auth0 (https://auth0.com/) to securely install the user sign in/signup information and also keeps a backup in an encrypted database at the NOA infrastructure.
 - ☐ A Server Side API, using PHP & PostgreSQL for the storing of the crowdsourcing information, i.e. the storing of the geo-tagging information.

DisasterHub – App use cases

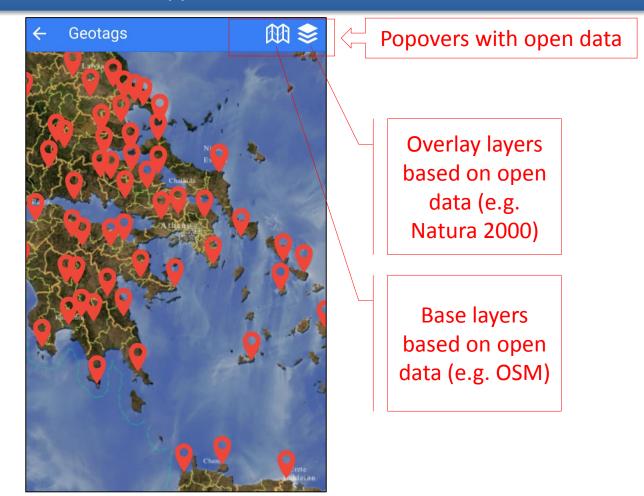
❖ Single step Sign in / Sign up



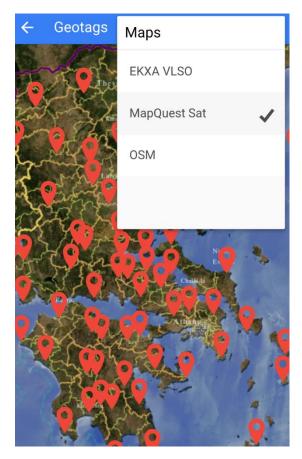
DisasterHub – App use cases (cont'd)

Main screen

Basic info of the hazardous event.
Click to navigate map to this area.

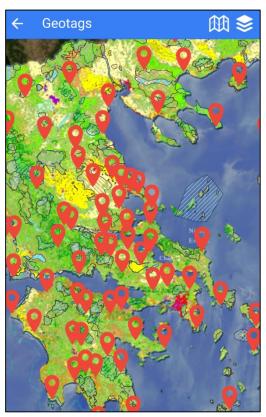

Click on the button to add a geotag

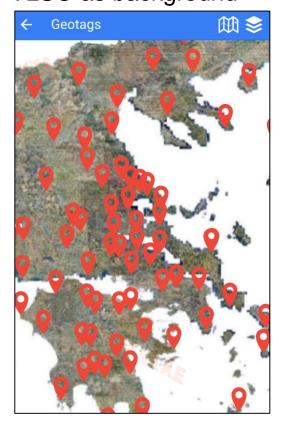
DisasterHub – App use cases (cont'd)


Geotags screen

DisasterHub – App use cases (cont'd)

Geotags screen with popovers shown





DisasterHub – App use cases (cont'd)

Geotags screen with Corine Land Cover and Natura 2000 selected

Geotags screen with EKXA VLSO as background

DisasterHub – App use cases (cont'd)

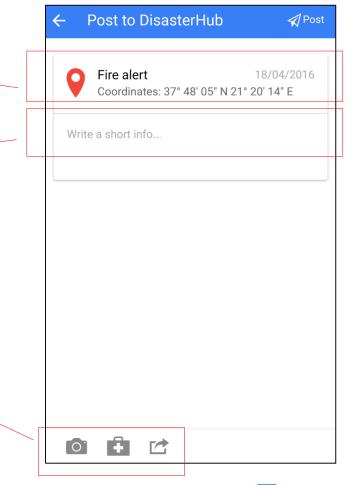
❖ 3 steps geo-tagging mechanism. Step (1/3)

(1)

Zoom to the area of interest and tap-hold to add a marker

(2)

Click on the tick button that will pop up to continue to the next step


DisasterHub – App use cases (cont'd)

❖ 3 steps geo-tagging mechanism. Step (2/3)

Basic info of the geotag

Add some text info (e.g. a description that might help the first responders)

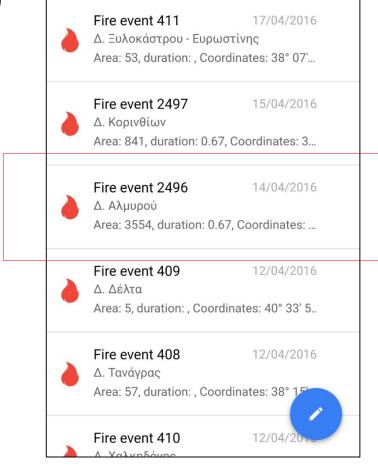
Add a photo or an emergency alert.
Share your geotag to the social media.

DisasterHub – App use cases (cont'd)

❖ 3 steps geo-tagging mechanism. Step (3/3)

Success!!!

Your geotag is now successfully ingested in DisasterHub and other users can view it



DisasterHub – App use cases (cont'd)

Event navigation mechanism (Select event)

Click event to navigate map to the event's burned area

DisasterHub – App use cases (cont'd)

Event navigation mechanism (Event view)

Polygons of the burned area as generated from FireHub.

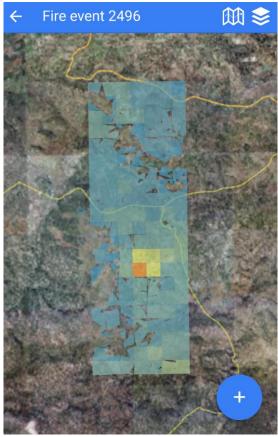
Click on the floating menu button to view further options.

DisasterHub – App use cases (cont'd)

Event navigation mechanism (Event view options)

The floating menu expanded with further view options. The user can do one or more of the following:

- a) View the event evolution
- b) View the geotags that other users put regarding this event.
- c) Refine the spatial analysis of the fire polygons, i.e. downscale.



DisasterHub – App use cases (cont'd)

Event navigation mechanism (refined view)

Final BEYOND Workshop, 17 May 2016 Athens, Electra Palace

Event navigation mechanism (refined + geotags view)

DisasterHub – Open source

DisasterHub is entirely built using Open source frameworks and tools.

AngularJS

Ionic framework

Apache Cordova

Adobe Phonegap

ngCordova

OpenLayers 3

PHP Auth0

PostgreSQL

HTML5

CSS

Sublime Text

Telerik

DisasterHub – Open data

- DisasterHub is using datasets that are following the GEOS Data Sharing principles (http://www.earthobservations.org/dswg.php):
 - \Box OSM.
 - ☐ MapQuest satellite.
 - High resolution aerial images of Hellenic National Cadastre (EKXA VLSO).
 - ☐ CLC 2006.
 - Natura 2000.
 - ☐ Urban Atlas.
 - ☐ Toponyms.
 - Crowd generated geotags without user information.
 - ☐ FireHub generated datasets:
 - Raw fire polygons generated through processing MSG Seviri II satellite images.
 - Refined fire polygons generated through further processing of MSG Seviri II satellite images.
 - Fire polygons generated through processing satellite images from polar orbiting satellites (Aqua/Terra MODIS, NPP VIIRS, NOAA AVHRR).

DisasterHub – Roadmap

- Provide the user with more functionalities, such as:
 - Push notifications.
 - ☐ Navigation.
 - Advanced filtering mechanisms (e.g. view the hazardous events that are active and closer to her current location).
 - ☐ Advanced support during and after crisis (e.g. provide him with possible escaping routes during crisis).
- ❖ Integrate more hazards. The Ministry of Infrastructure, Transport and Networks of Greece has already expressed its interest in integrating Geo hazards (Earthquakes, landslides, volcanos) and floods.

DisasterHub – The END

