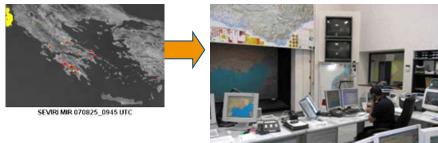


FireHub: A Space based Fire Management Hub

Haris KONTOES, Research Director NOA BEYOND Coordinator



FireHub

BEYOND participated in the **Best** Service Challenge Copernicus -Masters competition

Submitted Service : The Operational EO based fire management service, known as:

"FireHub: A Space Based Fire Management Hub"

The service consists of four pillars:

- 1. The early fire detection and real-time fire monitoring
- 2. The large scale Burnt Scar Mapping during and after wildfires
- 3. The diachronic BSM and damage assessment
- 4. The hourly forecasting of fire smoke dispersion

AN AN

"FireHub: A Space Based Fire Management Hub "

FireHub

SEVENTH FRAMEWORK FP7-Regpot-2012-13-1

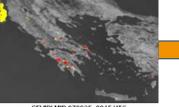
"FireHub: A Space Based Fire Management Hub "

FireHub

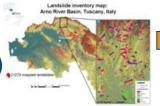
影

"FireHub: A Space Based Fire Management Hub "

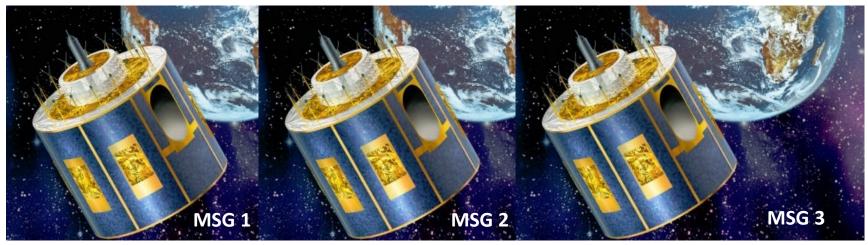
FireHub



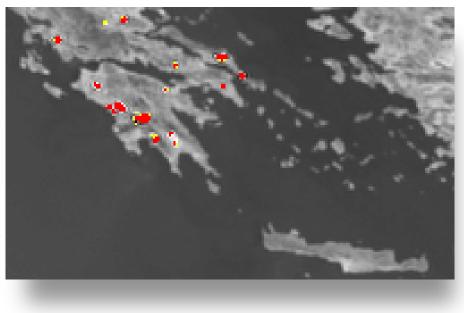
Institutional End Users and stakeholders receiving the fire disaster services:

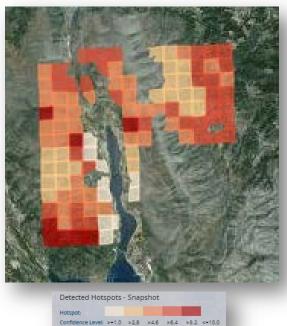

SEVIRI MIR 070825 0945 UT(

- The European Copernicus Program (EMS service) 3
- The Hellenic Fire Brigades Operations' Control Room (199) 3
- The Ministry of Env. (Directorate for Forests 3 Protection
- The Gen. Sec. Civil Protection 3
- The Forestry Services over Greece and Europe 3
- **The Local Authorities & Environmental Organisations** 3
- **The Greek Army** 3
- **The Public** 3
- **The European Fire Monitoring Center** 3
- The Serbian HydroMet Service (transfer of know-how) 3
- The BBU Research Center for Disaster Management-3 (expressed interest)

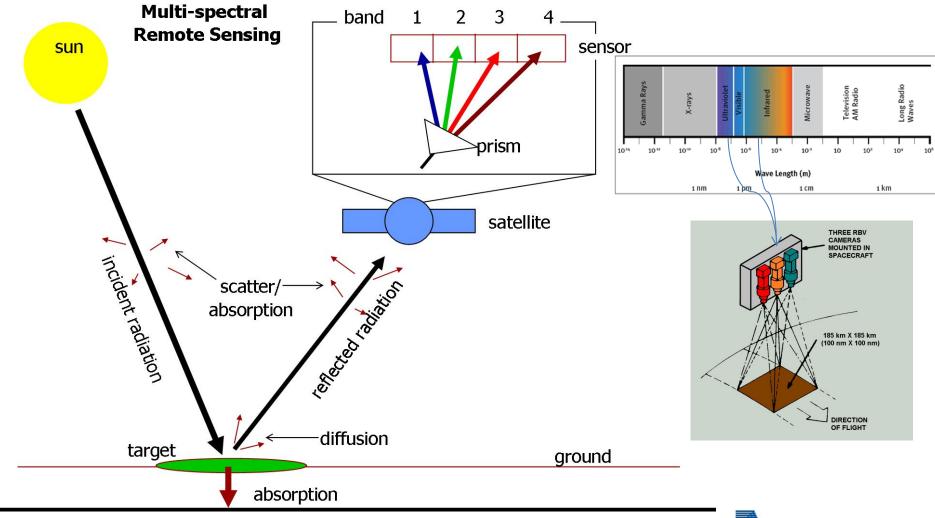


Active Fire Detection by MSG SEVIRI Instrument


1	VIS0.6	0.635	0.56	0.71								
2	VIS0.8	0.81	0.74	0.88								
3	NIR1.6	1.64	1.50	1.78								
4	IR3.9	3.90	3.48	4.36								
5	WV6.2	6.25	5.35	7.15								
6	WV7.3	7.35	6.85	7.85								
7	IR8.7	8.70	8.30	9.1								
8	IR9.7	9.66	9.38	9.94								
9	IR10.8	10.80	9.80	11.80								
10	IR12.0	12.00	11.00	13.00								
11	IR13.4	13.40	12.40	14.40								
12	HRV	Broadband (about 0.4 - 1.1 μm)										


Surface, clouds, wind fields Surface, cloud phase Surface, cloud phase Surface, clouds, wind fields Water vapor, high level clouds, atmospheric instability Water vapor, atmospheric instability Surface, clouds, atmospheric instability Ozone Surface, clouds, wind fields, atmospheric instability Surface, clouds, atmospheric instability Cirrus cloud height, atmospheric instability Surface, clouds

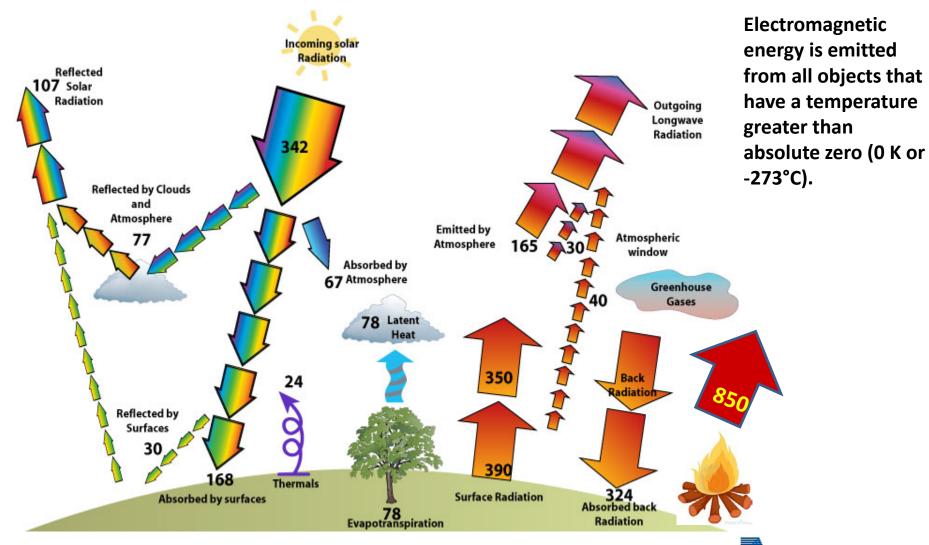
Regional Real Time Fire Monitoring Service based on EUMETSAT MSG SEVIRI Data Monitoring


Raw resolution: 3.5x3.5 km wide pixel over entire

Refined resolution: 0.5x0.5 km wide pixel over entire Greece

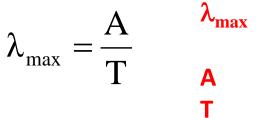
The Sensor system onboard the EO satellite

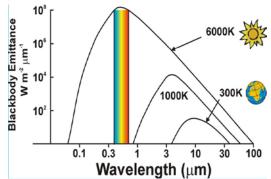
FP7-Regpot-2012-13-1


SEVENTH FRAMEWORK

FP7-Regpot-2012-13-1

SEVENTH FRAMEWORK


The Emitted Radiation



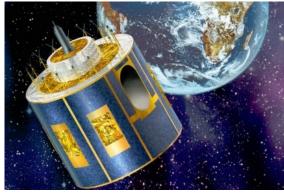
Wien's Displacement law

The **dominant wavelength** at which a blackbody radiation curve reaches a maximum, is related to temperature and follows the **Wein's Law**

- = wavelength of maximum spectral radiant exitance (μm) = constant, equal to 2898 ($\mu m * K$)
- = Temperature, (K)

The greater the T the shorter the wavelength λ_{max}

Example cases:


(i) Earth ambient temperature ~ 300 K (27°C) $\rightarrow \lambda_{max} = 2898/300 = 10 \ \mu m$ (TIR) (ii) Vegetation fire temperature ~ 850 K(577°C) $\rightarrow \lambda_{max} = 2898/850 = 3.5 \ \mu m$ (MIR) (iii) Sun temperature ~6000k (5726°C) $\rightarrow \lambda max = 2898/6000 = 0.5 \ \mu m$ (B)

Active Fire Detection by MSG SEVIRI Instrument

1	VIS0.6	0.635	0.56	0.71	Surface, clouds, wind fields
2	VISO.8	0.81	0.74	0.88	Surface, clouds, wind fields
3	NIR1.6	1.64	1.50	1.78	Surface, cloud phase
4	IR3.9	3.90	3.48	4.36	Surface, clouds, wind fields
5	WV6.2	6.25	5.35	7.15	Water vapor, high level clouds, atmospheric instability
6	WV7.3	7.35	6.85	7.85	Water vapor, atmospheric instability
7	IR8.7	8.70	8.30	9.1	Surface, clouds, atmospheric instability
8	IR9.7	9.66	9.38	9.94	Ozone
9	IR10.8	10.80	9.80	11.80	Surface, clouds, wind fields, atmospheric instability
10	IR12.0	12.00	11.00	13.00	Surface, clouds, atmospheric instability
11	IR13.4	13.40	12.40	14.40	Cirrus cloud height, atmospheric instability
12	HRV	Broad	band (a	about 0.4 - 1.1 μm)	Surface, clouds

SEVENTH FRAMEWORK FP7-Regpot-2012-13-1

Active Fire Detection by MSG SEVIRI Instrument

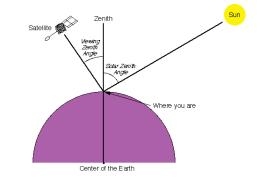
The best suited MSG SEVIRI Channels for active fire detection of forest and vegetation fuels and discrimination from ambient temperatures are:

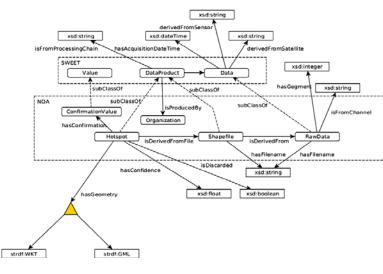
Channel	Central Wavelength (µm)	Spectral Band (µm)
IR 3.9	3.92	3.48 - 4.36
IR 10.8	10.8	9.80 - 11.80

Classification step #1: The EUMETSAT Fire mapping algorithm (FIR) is based on fixed thresholding approach, applied on the spectral bands **IR 3.9** and **IR10.8**. The FIR algorithm uses the following criteria to check for **potential fire and fire pixels**:

- 1. Brightness temperature of channel IR3.9 > threshold 1
- 2. Brightness temperature difference of channels IR3.9 and IR10.8 > threshold 2
- 3. Difference of the standard deviations of channel IR3.9 and IR10.8 > threshold 3
- 4. Standard deviation of channel IR3.9 > threshold 4
- 5. Standard deviation of channel IR10.8 < threshold 5

(all standard deviations are computed over a 3x3 pixel group)

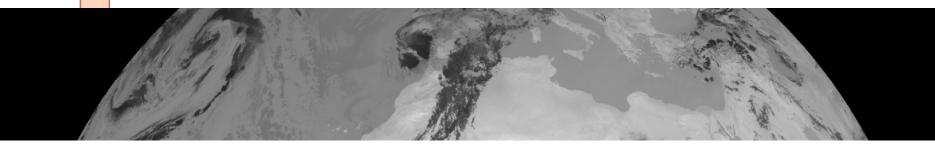



CLASSIFICATION PROCESS

Classification enhancement # 1: The thresholds are dynamically changing calculated for each image and every pixel location on the basis of the seasonally variations and time depended Solar Zenith Angle.

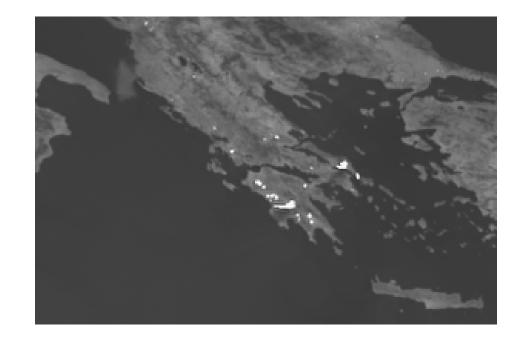
Classification enhancement # 2 : Create and integrate classification evidence through geospatial ontology schemes and reasoning queries, accounting for the

- a) thematic consistency by eliminating false alarms
- **b)** account for the time persistence of the fire observations



Data Import

- Extention module in MonetDB to load HRIT file into an SQL table or SciQL array
- HRIT_load_image(URIs) function



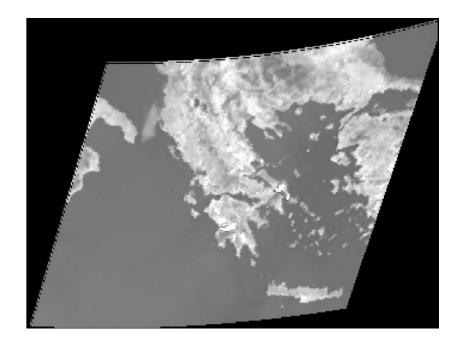
Data Import

- Extention module in MonetDB to load HRIT file into an SQL table or SciQL array
- HRIT_load_image(URIs) function

Cropping

- Range query
- Reduction of input size for the remaining image processing operations

Data Import


- Extention module in MonetDB to load HRIT file into an SQL table or SciQL array
- HRIT_load_image(URIs) function

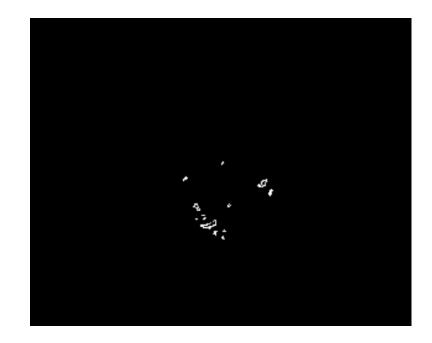
Cropping

- Range query
- Reduction of input size for the remaining image processing operations

Georeferencing

- Initial transformation by hand
- Concise implementation using SciQL

Data Import


- Extention module in MonetDB to load HRIT file into an SQL table or SciQL array
- HRIT_load_image(URIs) function

Cropping

- Range query
- Reduction of input size for the remaining image processing operations

Georeferencing

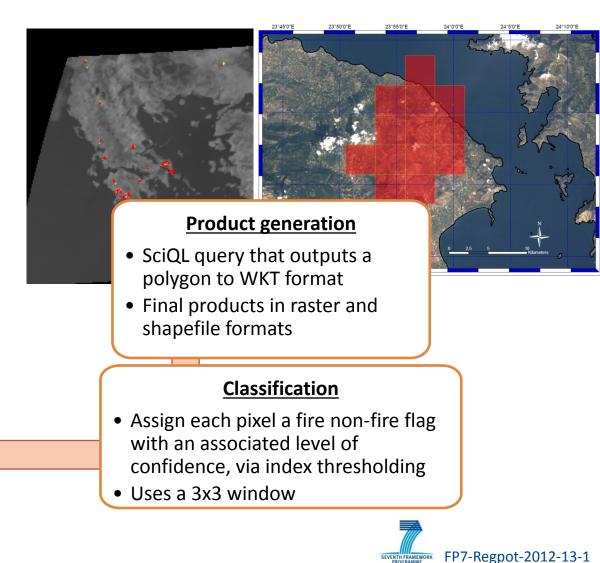
- Initial transformation by hand
- Concise implementation using SciQL

Classification

- Assign each pixel a fire non-fire flag with an associated level of confidence, via index thresholding
- Uses a 3x3 window

The FIREHUB System

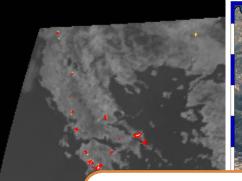
Data Import


- Extention module in MonetDB to load HRIT file into an SQL table or SciQL array
- HRIT_load_image(URIs) function

Cropping

- Range query
- Reduction of input size for the remaining image processing operations

Georeferencing


- Initial transformation by hand
- Concise implementation using SciQL

Data Import

- Extention module in MonetDB to load HRIT file into an SQL table or SciQL array
- HRIT_load_image(URIs) function

Product generation

- SciQL query that outputs a polygon to WKT format
- Final products in raster and shapefile formats

Classification

- Assign each pixel a fire non-fire flag with an associated level of confidence, via index thresholding
- Uses a 3x3 window

SciQL

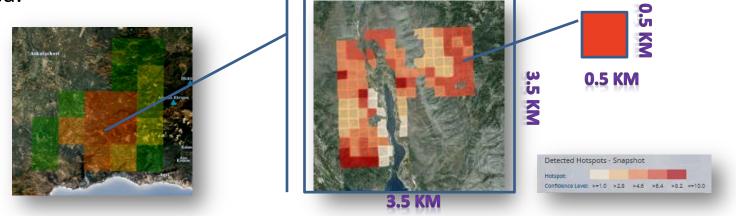
Georeferencing

Initial transformation by hand

Concise implementation using

Regional Real Time Fire Monitoring - NOA's MSG SEVIRI Station – Raw Resolution mode

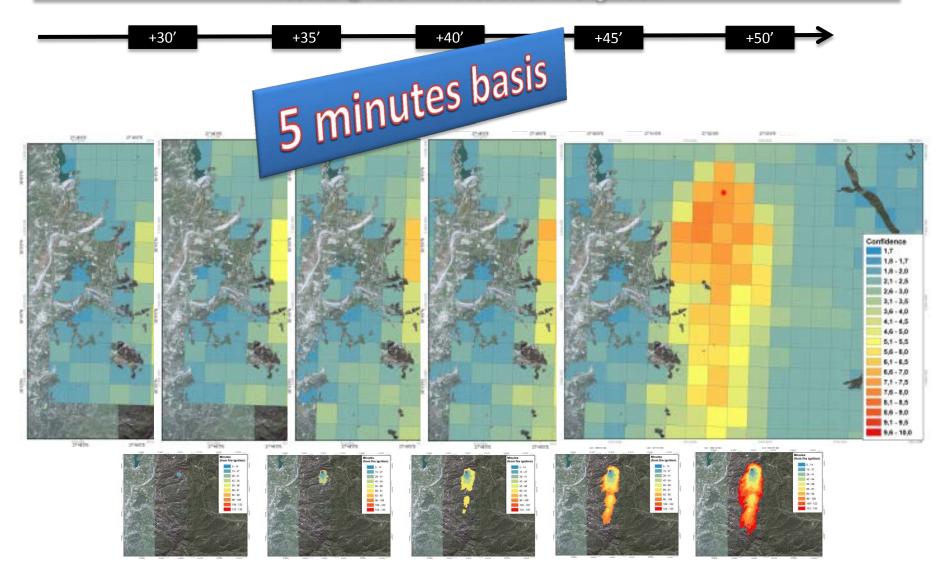
SEVIRI MIR 070823_1030 UTC

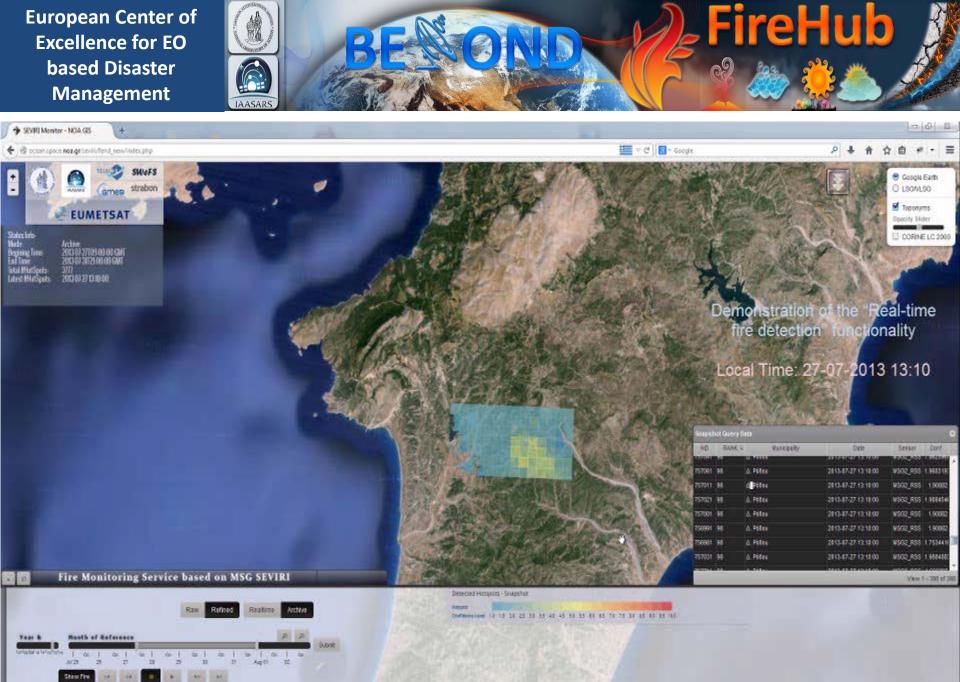

POTENTIAL FIRE

CLASSIFICATION PROCESS

Classification enhancement # 3: Downscaling the first classification output and calculate the fire occurrence probability in sub-areas of 500 m x 500 m wide, inside the initial observation area of 3.5km x 3.5 km, accounting for the real meteorological, physical / ecological, and morphological conditions in the affected area such as,

a) Wind conditions (speed/direction), **b)** Fuel types and fuel type's proneness to fire, **c)** Altitudinal zone, **d)** Slope and Aspect elements of each of the 500m x500m area.




SEVENTH FRAMEWORK FP7-Regpot-2012-13-1

Results @ 150 minutes after fire ignition

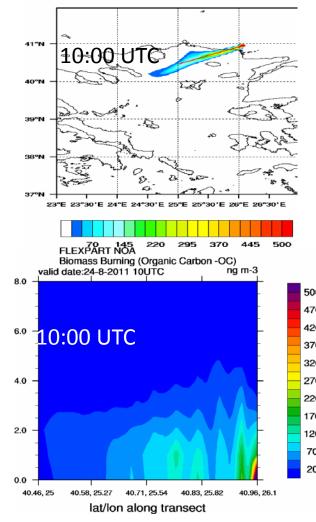
annection al

Shou Pro - ter - ----

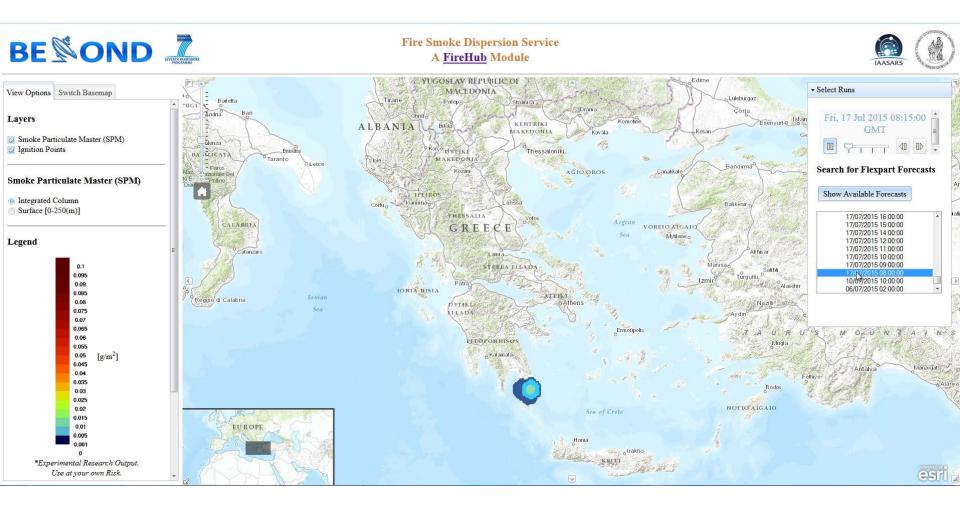
FLEXPART – NOA

Biomass Burning (Organic Carbon – OC)

FLEXPART - NOA Biomass Burning (Organic Carbon -OC)


valid date:24-08-2011 09UTC Model layer: Integrated Column (ng m⁻³)

Valid Date:26-08-2007 0900UTC (ng m⁻³) 09:00 UTC Model layer: Integrated Column 25°30'E 26°E 26°30'E 24°20'E EXPART NOA 145 370 445 500 295 mass Burning (Organic Carbon -OC) ng m-3 te:24-8-2011 09UTC 500 470 420 :00 UTC 370 320 270 220 170 28°E 20°E 22°E 24°E 26°E 120 70 20 10 20 60 70 80 90 100 40.58, 25.27 40.71, 25.54 40.83, 25.82 0 30 40.96, 26.1 lat/lon along transect


FLEXPART - NOA Biomass Burning (Organic Carbon -OC)

FireHub

valid date:24-08-2011 10UTC Model layer: Integrated Column (ng m⁻³)

Rapid Mapping During Crisis - Off-line Mapping After Crisis

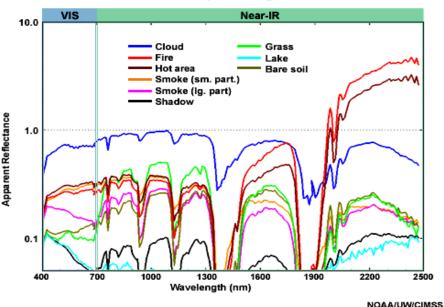
(Single/multi-date) Burn Scar Mapping from reflected Near - Mid Infrared radiation captured by multispectral sensor systems

Landsat-7 ETM+ Bands (μm)			Landsat-8 OLI and TI	<i>S</i> Bands (μm)		
			30 m Coastal/Aerosol	0.435 - 0.451	Band 1	
Band 1	30 m Blue	0.441 - 0.514	30 m Blue	0.452 - 0.512	Band 2	
Band 2	30 m Green	0.519 - 0.601	30 m Green	0.533 - 0.590	Band 3	
Band 3	30 m Red	0.631 - 0.692	30 m Red	0.636 - 0.673	Band 4	
Band 4	30 m NIR	0.772 - 0.898	30 m NIR	0.851 - 0.879	Band 5	
Band 5	30 m SWIR-1	1.547 - 1.749	30 m SWIR-1	1.566 - 1.651	Band 6	
Band 6	60 m TIR	10.31 - 12.36	100 m TIR-1	10.60 - 11.19	Band 10	id
			100 m TIR-2	11.50 - 12.51	Band 11	Starting and a starting of the
Band 7	30 m SWIR-2	2.064 - 2.345	30 m SWIR-2	2.107 - 2.294	Band 7	
Band 8	15 m Pan	0.515 - 0.896	15 m Pan	0.503 - 0.676	Band 8	La
			30 m Cirrus	1.363 - 1.384	Band 9	
	- (96			MIR	<u>г</u>	R
	Atmospheric transmission (%)				10-12	G LANDSA ETM+
The final	Wave BEYOND Woi	elength 0.5 p		0μm 5.0	0μm 10	.0 μm 100 μm 1mm 1cm 1m
	Electra Palace		uy 2010			SEVENTH FRAMEWORK FP7-Regpot-2012-13-1
						PROGRAMME

Rapid Mapping During Crisis - Off-line Mapping After Crisis

BSM_NOA Pre- Processing

(1) Separate clouds from vegetation – Create water and shadow masks


(3) Perform sensor radiometric calibration and scene radiometric normalisation to create compatible time series of satellite image acquisitions for multi-date analysis

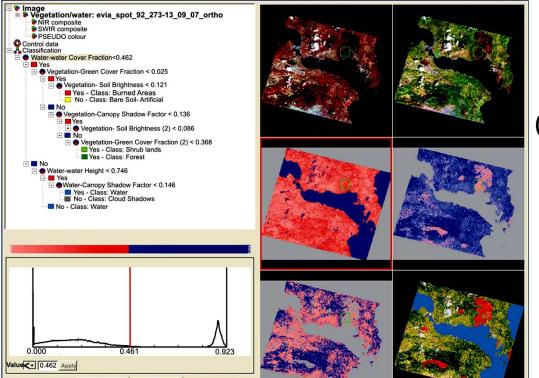
(4) Geo-reference the input satellite data using fully automatic image coregistration techniques with appropriate sensor geometric models

Rapid Mapping During Crisis - Off-line Mapping After Crisis

Vis & Near IR Spectral Signatures

BSM_NOA Processing

(1) Generate band transformation indices Normalised Burn Ratio Index, Albedo, NDVI, multi-date NDVI, NDVIdiff, multi-date derived Radiometric Change Vectors


(2) Define appropriate image /sensor/land use dependent threshold values and apply to the band transformation indices in order to: a) identify yearly changed from unchanged areas due to fire disasters and other ecosystem disturbances, b) identify burnt spectra on the image plane, and c) resolve for open, urban, and less vegetative areas' confusion

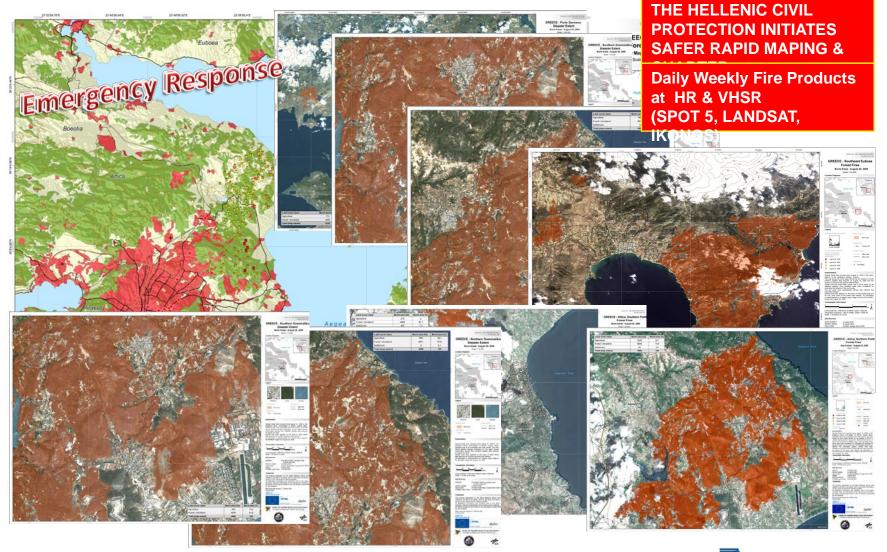
FireHub

Classification

Rapid Mapping During Crisis -Off-line Mapping After Crisis

BSM_NOA Post Processing

(1) Clean from isolated pixels, and small area classification noise using a 3x3 smoothing kernel, and proceed with the join of small disconnected fire pixel clubs to larger segments (>1ha). Filter out objects smaller than 1ha


(2) Convert raster fire classification layer to vector fire polygons and smooth the fire polygon boundaries to resolve from pixel effect

(3)Apply a series of geospatial reasoning queries in GIS using expert knowledge in order to generate refined classifications of Burnt Areas (based on knowledge extracted from over than 30 years of fire occurrence statistical observations)

(4)Assign attribute data to the fire vector polygons (administrative data, land cover data, toponyms, area (ha), perimeter, etc)

The final BEYOND Workshop, 17 May 2016 Athens, Electra Palace

FireHub

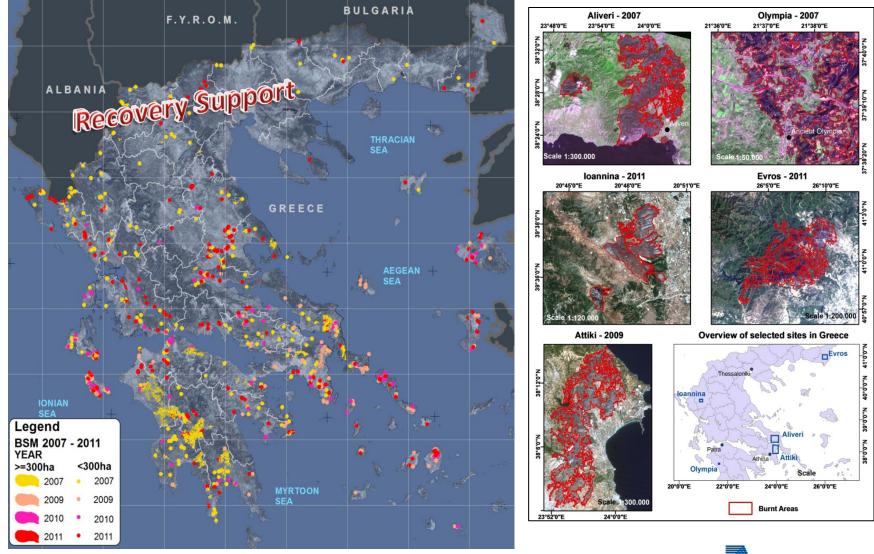
Data Sources
Wohl/Ver-2-multi-spectral 1.85m pixel size, 07.00.2011.

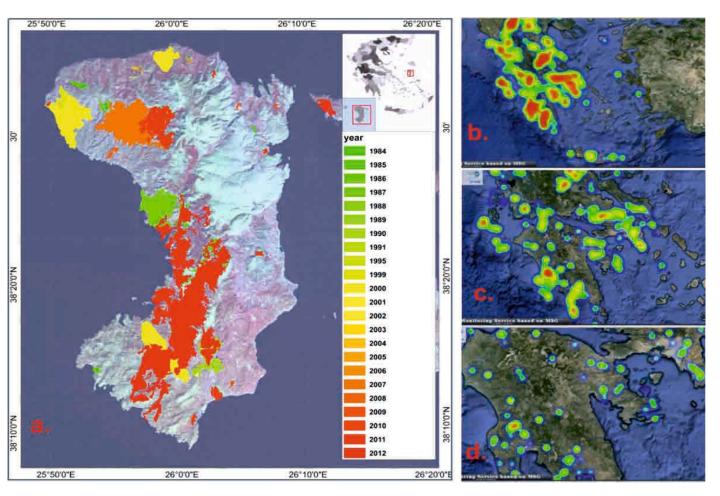
vestmäse positional attuisey surgeven Vector Data O OpenStreefMag & contributins, CC-BY-SA Vector Data O Road Edition Maps Vector Data O geodata gov gr Vector Data O geodata gov gr Vector Data 62011 Geogle, 62011 Digital Globe, 62011 Tele At

None cano over o con, orpening

SATER and its suggines have altempted to provide mapping that is an accurate as evaluate with the source materia, however all peoply in chimeston has induct that is the scalar. If the analysis is the source of the source of

Map produced on 19 09 2011 by ISARSNOA ID NOA 2011

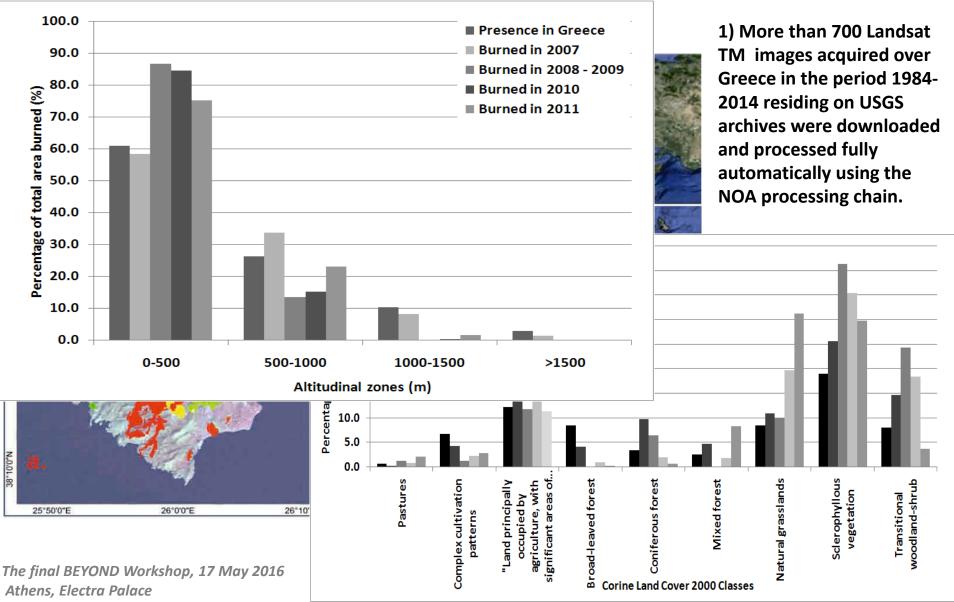




FP7-Regpot-2012-13-1

SEVENTH FRAMEWORK

1) More than 700 Landsat TM images acquired over Greece in the period 1984-2014 residing on USGS archives were downloaded and processed fully automatically using the NOA processing chain.


2) Yearly maps of Burned Areas have been produced

3) Yearly statistics per land cover type and administrative data have been generated

4)On-line dissemination of the produced maps and statistics through the NOA's dedicated web interface

National Observatory of Athens Continuous offer to the Scientific Research since 1842

Greek General Secretariat for Research and Technology

FireHub

Event

Logo

http://ocean.space.noa.gr/bsm

DIACHRONIC INVENTORY OF FOREST FIRES OVER GREECE FROM 1984 TO PRESENT, WITH USE OF LANDSAT 4,5,7 SATELLITE DATA

URL: http://www.noa.gr

01-08-2013

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΔΗΜΟΣΙΑΣ ΤΑΞΗΣ ΚΑΙ ΠΡΟΣΤΑΣΙΑΣ ΤΟΥ ΠΟΛΙΤΗ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΠΟΛΙΤΙΚΗΣ ΠΡΟΣΤΑΣΙΑΣ ΑΡΧΗΓΕΙΟ ΠΥΡΟΣΒΕΣΤΙΚΟΥ ΣΩΜΑΤΟΣ -199-ΣΥΝΤΟΝΙΣΤΙΚΟ ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΚΕΝΤΡΟ

ΥΠΗΡΕΣΙΩΝ ΠΥΡΟΣΒΕΣΤΙΚΟΥ ΣΩΜΑΤΟΣ

A/A	ΠΥΡ/ΚΗ ΥΠΗΡΕΣΙΑ	ΔΗΜΟΣ - ΚΟΙΝΟΤΗΤΑ		XPO	NOVOLIN	۹.		KA	MMENH	ΕΚΤΑΣ	Η (Στρέ	μματα)			ПF	ροεσι	ко					ME	ΣA		
Α.ΕΓΓΡ			ENAPE	M.EA.	ΕΛΓΧ.	KATA	ΔΑΣ.	Δ.E.	ΑΛΣ.	X.E.	KAA.	F.E.	Y.K.	П.Ү	ΠEZ	EOE 2	TP	Α.Δ.	п/о	OTA	BYT	MHX	EAL	AΦC	ΑΦΡ ΑΦΟ
1		Δ. ΣΑΜΟΥ	21-07	23-07	30-07	01-08		600																	
154504	Π.Υ. ΣΑΜΟΥ	ΑΚΡΩΤΗΡΙ ΖΩΟΔΟΧΟΥ ΠΗΓΗ	15:15	09:15	09:20	08:00								20	46	60			7	20			1	4	
2		Δ. ΧΙΟΥ	25-07	26-07	29-07		1100			100		100		6					3						
154682	Π.Υ. XIOY	ΑΓ. ΙΣΙΔΩΡΟΣ-ΠΙΤΥΟΣ	11:25	19:05	20:50			·						45	22	100	10		15	5	6		1	5	
3		Δ. ΣΕΡΙΦΟΥ	25-07	26-07	30-07	01-08				300															
154696	Π.Υ. ΕΡΜΟΥΠΟΛΗΣ	ΣΚΛΑΒΟΓΙΑΝΝΗ	15:20	11:35	07:30	19:30		-						2	9				1	1			1	2	
4		Δ. ΣΕΡΙΦΟΥ	26-07	28-07	30-07	01-08				1000															
154772	Π.Υ. ΕΡΜΟΥΠΟΛΗΣ	ΑΓΙΑ ΜΑΡΙΝΑ	21:00	18:10	07:30	19:35								13	9	C			2	P	1		1	6	
5		Δ. ΡΟΔΟΥ	27-07	31-07				35000				3000		80		EP			$\boldsymbol{\boldsymbol{\boxtimes}}$						
154797	Π.Υ. ΡΟΔΟΥ	ΙΣΤΡΙΟΣ	16:10	11:30										100	134				39	7	3	5	5	8	
6		Δ. ΠΡΕΣΠΩΝ	29-07	29-07	01-08	01-08				50			A												
154896	Π.Υ. ΦΛΩΡΙΝΑΣ	"Μπέλα Βόδα"	17:15	23:00	07:00	14:00								19	3)				8						
7	Π.Υ. ΤΡΙΠΟΛΗΣ	Δ. ΒΟΡΕΙΑΣ ΚΥΝΟΥΡΙΑΣ	30-07	30-07	31-07	01-08		165				0													
154921	Π.Κ. ΑΣΤΡΟΥΣ	Ορεινή Μελιγού- Κοδέλες	11:35	21:00	17:00	18:00								34	14				14	2	2			3	2
8		Δ. ΡΗΓΑ ΦΕΡΑΙΟΥ	31-07	31-07	01-08	01-08	1				-														
154987	2ος Π.Σ. ΒΟΛΟΥ (ΒΙΠΕ)	Αγ.Αθανάσιος	13:10	18:40	07:00	0:00	- 9							16	17				7						
9		Δ. ΚΙΛΕΛΕΡ	31-07			30.				20			80												
155032	1ος Π.Σ. ΛΑΡΙΣΑΣ	Δ.Δ. ΜΥΡΩΝ	23:50			C 30	05							2					1						
10		Δ. ΚΙΛΕΛΕΡ	-08										50												
155038	1ος Π.Σ. ΛΑΡΙΣΑΣ	-	:43			07:25								2					1						
11	Δ.Π.Υ. ΗΡΑΚΛΕΙΟΥ	Δ. ΧΕΡΣΟΝΗΣΟΥ	-08							110				3					1						
155044	Π.Κ. ΧΕΡΣΟΝΗΣΟΥ	Πεδιβολης υ ων	:13	19:30										18	12				7	3			1		
12	Δ.Π.Υ. ΛΑΡΙΣΑΣ	A. PA EA N	01-08			01-08							30												
155053	Π.Κ. ΦΑΡΣΑΛΩΝ	Az	14:05			14:45								2					1						
13		ΧΑΛΙΑΛΔΟΝΟΣ	01-08	01-08		01-08				1	0.5		30												
155055	6ος Π.Σ. ΘΕΣΣΑΛΟΝΙΚΗ	ΞΗΡΟΧΩΡΙ	14:20	16:47		19:00								4					2						
14	Π.Υ. ΓΥΘΕΙΟΥ	Δ. ΚΥΘΗΡΩΝ	01-08											28	24				12	2	6				
155060	Π.Κ. ΚΥΘΗΡΩΝ	Κομινιάνικα- Αγία Ελλέσα	15:23										·	28	24				12	2	6			2	
15		Δ. ΚΙΛΚΙΣ	01-08	01-08	01-08	01-08				10	5		50												

ΚΑΤΑΣΤΑΣΗ ΔΑΣΙΚΩΝ ΠΥΡΚΑΓΙΩΝ

1) 25-30% of the detected fires are reported 10 -15 minutes earlier than Fire Brigades logs

2) 60% of the detected fires, are reported in the first ~15 minutes after the ignition time stamp reported in the Fire Brigade logs

3) All the larger fires than the 112ha are completely detected without any omission

4) Smaller fires, that are in the range of [4.7ha - 112 ha] are 50% detected

5) The smallest detected fire has been of the order of 4.7 ha

6) The omitted fire detections, are summing up to the 5,8% of the total Burned Area. Omissions are caused mainly due to, a) cloud cover, b) fire intensity (e.g. small fires – small burned areas), c) area topography, and d) fuel characteristics (e.g. less vegetative areas, pasture lands, sparse vegetation resulting in low fire intensities)

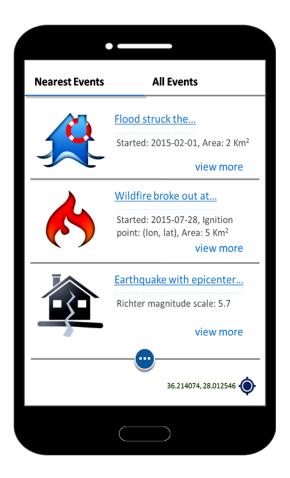
7) The 82-85% of the 500mx500m cells which are assigned a high fire occurrence probability that is in the range of [6, 10], are located in the Burned Area Polygons

System Updates

- Real time integration of active fire and burned area evidences, as soon as they are depicted (captured) on the scenes of polar satellite systems acquired on the BEYOND X-/L-band acquisition station (EOS, NPP, NOAA/AVHRR, METOP)
- **Real time integration of in-field crowd source evidence** (e.g. fire locations, and ignition points) returned from the Fire Brigade teams during crisis
- Ingest the additional bits of evidence in an assimilation process for deriving more accurate FIREHUB assessments (fire occurrences)
- Use mobile platforms for informing about the fire occurrences in addition to the web platform

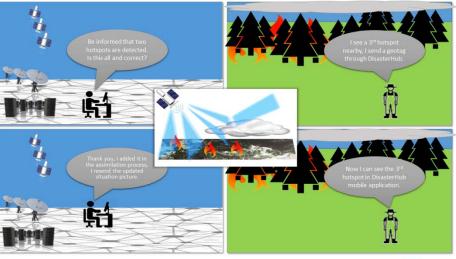
SEVENTH FRAMEWORK FP7-Regpot-2012-13-1

Expand the FIREHUB concept to other hazards (Floods, & EQs)

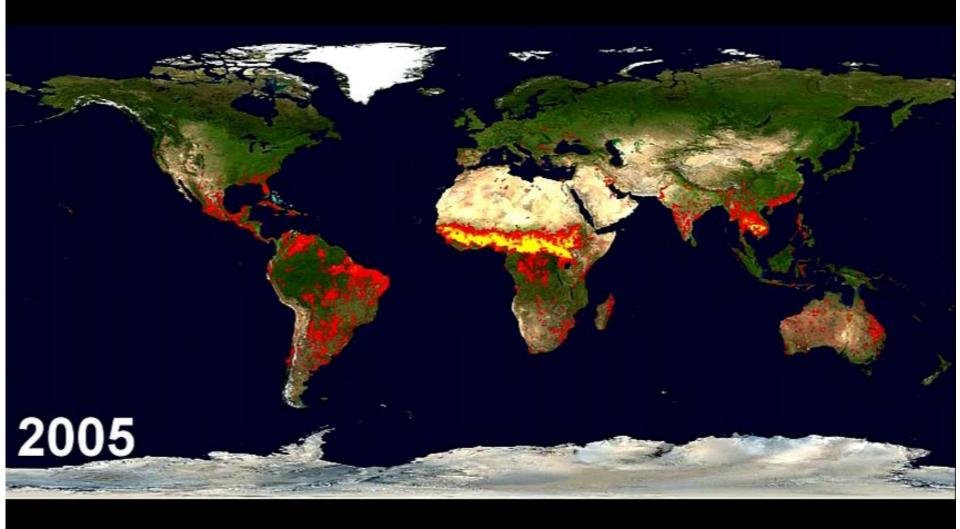


The final BEYOND Workshop, 17 May 2016 Athens, Electra Palace

FireHub



DisasterHub



FireHub

A Space based Fire Management Hub

BECORD FireHub

Thank you for your attention!

For more information

ocean.space.noa.gr/FireHub

