RE_oCAP

Automated remote sensing algorithms for CAP Cross Compliance and Greening obligations monitoring

National Observatory of Athens (NOA) Vasileios Sitokonstantinou vsito@noa.gr

Remote Sensing in RECAP

• The issue: Effective decision making on farmers' compliance to CAP CC and Greening rules

Soil/Carbon: Soil Organic matter	Crop residue burning restrictions (may not burn crop residues unless there is a plant health reason)	GAEC 6
Biodiversity: Crop Diversity	Diversification of crops	Greening 1
Soil/Carbon: Grassland	Maintenance of permanent grassland	Greening 2
Soil/Carbon: Soil cover	Maintain soil cover (unless agronomic justification)	GAEC4
Water: Nitrates	Area treated with N	SMR1
Water: Abstraction	Permits required for irrigation	GAEC2
Biodiversity: Habitats	Maintenance of semi-natural habitats	SMR2, SMR3
Landscape Features	Protecting scheduled ancient monuments	GAEC7
Water: Nitrates	Must inform of new slurry installation construction	SMR1
Water: Buffer Strips	Location of watercourses	GAEC1

- **The opportunity**: The availability of suitable and freely available data (Sentinels)
- The solution: Automated, transferable, robust classification & modeling tools based on multi-temporal, multi-spectral data

System Functionalities

- logging mechanism
 - recording requests, process monitoring
- tasking mechanism
 - Sentinel 2 retrieval, image pre-processing, image classification, publishing RGB ortho-images and vectors
- providing API and OGC services (mainly WMS)
 - Post results for each parcel (i.e. vegetation indices, classification results, runoff risk etc.)
 - Serving static RGB satellite images

Achievements in nutshell

By collecting and analyzing datasets from Paying Agencies (RECAP partners)

- 1. Developed a novel, parcel-based, machine learning, processing workflow for **classifying crops** using S2 (Greening 1 & 2)
- Developed a methodology based on the Revised Universal Soil Loss Equation (RUSLE) for the assessment of water pollution at parcel level (SMR 1)
- Customized an in-house levelset method for detecting burnt parcels with S2 (GAEC 6)

Crop Identification

Multi-temporal approach

- Sentinel-2 MSI imagery time-series
- Scenes, span throughout crops' life cycle
- Crop **phenology** is the discriminating information

Parcel-based image analysis

- Segmentation is performed based on LPIS data
- Pixel values, for all spectral bands and indices, within an object are averaged

Feature space

- 1. RGB, NIR, Red-Edge and SWIR bands of all S2 scenes
- 2. Vegetation Indices (NDVI, PSRI, NDWI) are additionally computed and incorporated

Algorithms tested

- Weighted k-Nearest Neighbor
- Bagged Trees (BT)
- quadratic kernel Support Vector Machines (SVM)

Supervised Classification

- More than 91% overall accuracy for the 9 main crop types in the AOI
- Use of free and open data : transferability
- Geographically independent and potentially scalable

Challenges

- Some crop types have similar time-series signatures (e.g. cereals, barley and oats)
- Crop types of ambiguous vegetation cover (e.g. shrub grass) are characterized by unspecific spectral behavior

SVM OA 91.59%

Crop Type	SVM PA	SVM UA
Soft Wheat	95.52	92.14
Corn	92.31	93.51
Barley	92.34	91.22
Oats	80.43	89.08
Sunflower	83.23	95.21
Rapeseed	89.22	95.94
Broad Beans	89.96	93.85
Shrub Grass	75.45	83.44
Vineyards	79.80	82.69

Impact of Sentinels

- A Landsat 8 OLI based scheme was implemented and compared to the Sentinel 2 MSI equivalent
- Comparisons were made in terms of **spectral**, **spatial** and **temporal** characteristics.
- Sentinel 2 scheme performance proved to dominate with respect to all three sensor characteristics
- Sentinel's 10 m and 20 m spatial resolution offered high thematic accuracy even for smallholdings
- Sentinel 2's 5 day revisit time ensures the construction of meaningful image time series even in heavily clouded regions

Polluted water runoff risk

- > SMR 1: Reduce water pollution in Nitrate Vulnerable Zones (NVZs).
- > The risk is based on parcels' (1) RUSLE product and (2) Proximity to watercourse
- 1. RUSLE refers to a nearly **static**, **freely available** product for **soil loss estimation** accounting for:
 - a. slope/length of parcel
 - b. rainfall-runoff erosivity,
 - c. soil erodibility
 - d. cover management (updated according to crop classification)
 - e. support practices
- 2. Water proximity disregards parcels whose slope has **opposite orientation** (DEM-based) to the nearest watercourse

Combination of RUSLE and proximity provides risk estimations for each parcel

Future work

- Over the next nine months the platform will be tested on 5 diverse pilot scenarios
- Feedback from validated compliance statistics would allow the better tuning of methods
- Ancillary **user-generated data** (georeferenced and date-tagged photos) will be incorporated to assist in the decision making

Conclusions

The Remote Sensing Component of the RECAP platform provides **automated** workflows for:

- 1. Crop identification
- 2. Burnt area mapping
- 3. Polluted water runoff risk assessment

System design & implementation characteristics

- On demand
- Time and cost efficient
- Geographic transferability
- Scalability to higher data dimensions (Big Data)